
Browser performance needs to be rethought. As
part of the Berkeley Parallelism Lab, we are design-
ing a new browser to achieve desirable Web appli-
cation performance without sacrificing developer
productivity. Our interest is forward-looking, in-
cluding both future application domains, such as
location-based services, and future hardware, such
as multicore phones. One key axis of performance
we have been investigating is how to incorporate
parallelism from the bottom up [1]. We’re not just
settling on parallel algorithms: whether it’s a se-
quential optimization or a new language, the com-
munity needs solutions.

Browser developers are facing a fascinating design
space in trying to get the most out of our avail-
able cycles. As consumers of browsers, we benefit
directly from their efforts, and as developers, we
might find lessons for our own programs. In the
following sections, after giving an idea about the
role of performance in Web sites and current bot-
tlenecks, we examine three fundamental axes for
optimizing browsers. Understanding this design
space motivates our own research in parallelizing
browsers from the bottom up.

Empirically, Web application speed impacts the
bottom line for software developers. Near its re-
lease, tracking of Google Maps showed that site
speedups were correlated to usage spikes. Simi-
larly, faster return times of search queries increased
usage. Photo-sharing sites have witnessed similar
performance-driven phenomena, even if a typical
user would not attribute their usage to it. Google’s
conclusion was that performance is important
enough that they now factor page load time into

their AdWords ranking algorithm! When the user experience directly affects
sales, lowering performance barriers matters.

Should browser developers focus on performance? First, as seen with
Google’s actions, performance has a huge impact on user experience. Cur-
rently, developers are choosing between productivity and performance. Sec-
ond, and more compelling, we have hit a wall with mobile devices. To be
precise, we hit the power wall. Moore’s Law holds, so transistors are still
shrinking, but we cannot just keep clocking them up nor use them for fur-
ther sequential hardware optimizations: because of energy (battery life) and
power (heat) constraints, hardware architects switched focus to simpler but
parallel architectures. For example, while a site such as Slashdot loads in
three seconds on a laptop, it takes 17 seconds on an iPhone using the same
wireless network. We expect performance to be the main decider in the
handheld market. Investing in browser performance targets a common pro-
ductivity drain and exposes emerging computing classes to more developers.

We first dispel the myth that the browser is network-bound. In a test of
loading the top 25 popular US Web sites on various browsers, the IE8 team
found the average total load time is 3.5–4 seconds, with 850 milliseconds
being spent using the CPU [2]. Network traffic can often be taken off the
critical path by smarter ordering or more careful caching and prefetching,
and advances such as content delivery networks and mobile broadband are
decreasing the actual network time. Unfortunately, the 850 milliseconds of
computation is harder to explain away. Once we bring handhelds back into
the picture, a 5–15x CPU slowdown becomes conspicuous. Table 1 details
total page load times of popular Web sites on a MacBook Pro and an iPhone,
measured by hand with a stopwatch when the Safari loading indicator stops.
Note that the two devices use the same wireless network and all the Web
sites are popular enough to be professionally optimized. To avoid caching
phenomena, there were only 1–2 trials per site.*

slashdot.org google.com yahoo.com wikipedia.org myspace.com

MacBook
Pro

3s 1s 1s 1s 2s

iPhone 17s 5s 14s 8s 15s

Where is the CPU time being spent? Despite the recent emphasis on faster
JavaScript runtimes, on average, popular sites only spend 3% of their CPU
time inside the JavaScript runtimes [3]. A JavaScript-heavy Web site such as
a Webmail client will bump up the usage percentage to 14%; most of that
time involves laying out the Web page and painting it, and, to a lesser ex-
tent, in more typical compiler front-end tasks like lexing and parsing. By
Amdahl’s Law, from font handling to matching CSS selectors, a lot needs to
be faster.

We must also target future workloads. We predict increased usage of clien-
tside storage, requiring a renewal in interest in speeding up structured per-
sonal storage. Scripts are also playing an increasing role, both in the number
of interactions with browser libraries and in those with standalone compo-
nents. Finally, we note a push toward more graphics: as augmented reality
applications mature, such as Google Maps, Virtual Earth, and Photosynth,
we expect the demand to grow even further, especially in the handheld

* Wireless cards on laptops are supe-
rior to those on iPhones. The band-
width difference is not sufficient to
explain the performance disparity.
Biasing the comparison in the other
direction, the iPhone does not support
Flash-based content such as adver-
tisements.

space. Graphic accelerators have large power, energy, and performance ben-
efits over thicker multicore solutions, so we even expect to see them in mo-
bile devices, partially addressing how we expect to see at least one of these
domains solved.

We do not expect one silver bullet for browser performance, but, by systemati-
cally breaking down how performance can be improved, we have a basis for
comparison and can understand the feasible extent of different approaches.
Browsers are CPU-bound, so we should reanalyze how our CPU cycles are
being spent. This leads to three fundamental axes for optimization.

Can we get a desired job done with fewer operations? We break down this
axis into three fundamental techniques:

Reduce functionality.■ Phones have traditionally been under-provisioned,
which has led to standards like WAP for writing applications with fewer
features. Mobile versions of Web sites use the same idea: to ease the CPU
load, Web site developers will simply remove functionality such as rich
UIs. While this is an effective path to performance for application develop-
ers, for browser developers, the popular acceptance of this solution is a
symptom of a systemic problem.

Avoid the abstraction tax. ■ Our group made a simple experiment: what
happens if we naively reimplement Google Maps in C and thereby avoid
the browser stack? We witnessed performance improvements of almost two
magnitudes! While rewriting various libraries within browsers, we saw a
similar trend: by more directly implementing components, skipping vari-
ous indirection and safety layers, we observed drastic improvements.

The community has latched onto this idea, leading to platforms like
the iPhone SDK, Android, and Native Client or APIs like the canvas tag
where developers code very close to the hardware. This is concerning. We
do not want to give up the software engineering benefits of abstracting
away hardware details and introducing productivity-related constructs.
Furthermore, we do not want to sacrifice the Web ecosystem: programs
such as search engines and browser extensions are largely flourishing be-
cause of the accessible, high-level structure of Web sites.

Optimize languages and libraries. ■ Ideally, we can shift the optimiza-
tion burden to compiler and library developers. Interest in optimizing
JavaScript has drastically increased, and a side benefit of rewriting layout
engines to be standards-compliant has been to make them faster. However,
while our experiences suggest there is a lot of room for sequential optimi-
zations, the feasibility of developers of a multimillion-line codebase imple-
menting fragile optimizations such as L1 cache tuning is unclear.

Proebsting’s observation about the alternative, compiler writers automat-
ing such optimizations, is worth recalling: once a language is reason-
ably implemented, compiler optimizations might yield 4% improvements
a year, while hardware has given, on average, 60% [4]. We should chase
magnitudes of improvement.

Developers are taking the first approach of simplifying their pages, and
while we’ve been finding 5–70x improvements with the other approaches,
they come at too high a cost.

Even if we have exhausted our budget of sequential operations per second,
we can follow Proebsting’s Law and look towards exploiting hardware. In-
creases in performance will be largely through increased parallel operations
per second. Given CMOS energy efficiency improvements of 25% per year,
we expect about an additional core per device every year over the next de-
cade, with each core supporting multiple hardware contexts and wide SIMD
instructions.

Hardware advances have allowed us to largely reuse existing languages and
libraries. Unfortunately, sufficient automatic parallelization has remained
tantalizingly distant, even for functional and dataflow languages. It is not
obvious that we can even manually parallelize programs such as browsers.

We note some concerns when parallelizing software such as browsers and
ways such concerns are being assuaged:

Can browser libraries exploit parallelism? ■ Our group is methodically
examining bottlenecks in browsers and parallelizing them, with our first
result being for the canonically sequential FSM-like task of lexing. More
significantly for browsers, we were able to design an algorithm to perform
basic layout processing—determining the sizes and positions of elements
on a page—in parallel, and are currently implementing it and iterating on
its design. We are not alone in exploring this space. For example, video is
already parallelized and we are not alone in rethinking parsing.

Can we exploit parallelism through concurrent calls? ■ We do not just
want to parallelize the handling of individual calls into libraries. For ex-
ample, can two different scripts interact with the layout library at the same
time? Part of our process of designing new parallel libraries is to look out
for such opportunities and think about how to detect the guarantees the
libraries need to exploit them. For example, visually independent com-
ponents, such as within <iframe> elements, correspond to actors whose
layout computations are not dependent upon sibling elements.

Will parallelization make browsers more brittle? ■ To increase the integ-
rity of browser runtimes, developers concerned with security have parti-
tioned core libraries like the layout engine into OS processes, benefiting
from address-space separation and management of resources such as CPU
time. Much of our focus has been on libraries, where we have been using
task-parallel systems such as TBB and Cilk++. This forces clearer code
structure and interfaces. As a comparison, our sequential optimizations,
like L1 cache optimizations, currently make code more brittle and inacces-
sible.

Given energy concerns, parallelization should be work-efficient. ■ A
common trick in parallelization is to locally duplicate computations in or-
der to avoid communication and synchronization overhead. Such tricks are
not work-efficient, potentially wasting power and energy. Work efficiency
means that if we were to simulate a parallel algorithm on a sequential
computer, it should take the same amount of time as the sequential one.
A common theme in our algorithms is speculative execution: we guess an
invariant, process in parallel based on it, and patch up our computation as
needed. For example, our layout algorithm speculates that one paragraph
will not flow into the other, so they can be processed independently. The
speculation is generally correct; when it is not, only the second paragraph
needs to be recomputed. By bounding the recomputation, whether by
localizing it or reducing its frequency, we approximate work efficiency.

We found some large yet simple opportunities for parallelism, such as with
our new lexing and CSS selector algorithms. However, many other computa-

tions span large amounts of code (e.g., layout), and there is also a standing
challenge in enabling Web designers to productively write parallel scripts
such as animations.

If we cannot effectively exploit the cycles available on a personal device,
perhaps we can use some elsewhere. For example, as latency decreases and
bandwidth increases, a model like cloud computing becomes appealing.
Web application developers already do this, by running database queries on
servers, for example, and only UI computations on clients. Recently, we have
witnessed reincarnations of X for browsers, allowing a thin client to display
the results of running a browser elsewhere, or even just proxying individual
plugins like Flash. It is worth reexamining how much computation we can
(and should) redistribute. By this we primarily mean partitioning computa-
tions across different devices. It is also possible to partition over time. For
example, search engines might cache popular queries, thick clients might
prefetch content, and slower compilers often create faster bytecodes. User
experience requirements combined with hardware constraints provide hints
at the limits of offloading computation.

For the user experience, perceived latency is crucial. For example, browsers
are now optimized to begin to display parts of a Web page before all of it is
available, despite the cost of inducing extra computation. Perceived latency
requirements vary by the type of task. Film—continuous, non-interactive
motion—is generally shot at 24 frames per second, allowing 42ms to com-
pute and render an animation. Many closed-loop systems, in which a user
gets feedback while interacting with a system, such as by watching a mouse
cursor move on a screen, have an upper bound of 100ms before tasks like
verbally communicating or moving an object significantly suffer. For lower
bounds, while hand tracking allows delays of 50–60ms, other domains are
less forgiving (e.g., head-mounted displays with such long delays cause nau-
sea). Finally, we note that there is a difference between delay and sampling
rate: gestural and aural interactions should have samples processed with in-
tervals on the order of milliseconds (and without jitter). For something like a
hand drum with different strokes, both requirements are in place.

Considering end-to-end system latency costs, even when limited to network
hops, it becomes clear that some computations are best when left on cli-
ent devices for the foreseeable future. Consider a wireless device acting as
a thin client for a proxied browser living in the cloud. From the device to a
tower might be 10ms, and, looking forward, another 10ms from the tower
to a hub. Round trip, that’s 40ms already. Going between two hubs, such
as LA and Seattle, on Internet2 is 40ms roundtrip (or 14ms at the speed of
light); a proxy will only meet interactivity needs if we assume collocations to
avoid this cost. Assuming a nearby hub, there is only 20ms round-trip la-
tency, for a total 60ms network latency for a proxy. After that, we must con-
sider device latency. We can add a delay of 10ms from an LCD, and an input
device like a mouse might poll somewhere around every 5–10ms, bringing
us to 75ms without having done anything. Even without including application-
specific costs such as compressing/decompressing data for transmission or
computing something with it (e.g., the animation or audio being interacted
with), the space of proxyable content is already limited. Streaming a movie
might be fine (with respect to latency), assuming highly tuned software, but
user experience in other domains will already be subpar irrespective of the
software. Forget turning your phone into a sensitive instrument.

There are further hardware concerns. In many locations and contexts, as-
suming fast Internet access, or even any access at all, is not possible. An-
other interesting cost is bandwidth. Browser use, in certain age groups,
rivals TV use: proxying rich experiences has an associated bandwidth ex-
pense that must scale to support mainstream use. While TV streams might
be shared between users, browsing sessions are more personal. Energy fac-
tors in again: proposals to increase bandwidth for devices, such as mul-
tiple antennas, are often still at the expense of battery life. Finally, we note
that there are economic costs. Web server farms cache a lot of their com-
putations, requiring little computation: as there will be less benefit from
consolidating devices, much of the financial incentive of cloud computing
disappears and a new pay model must close the gap. While we view latency
as a dominating concern, energy, connectivity, cost, and bandwidth also
have significant costs.

The situation is not entirely glum. Large computations should still be done
on a server. Even interactive computations might be partitioned: for exam-
ple, we experimented with a real-time mouse cursor, with positive results,
but delayed scrollbar. Furthermore, breaking the browser experience out of
the single device may still happen to enable new features, such as migrating
a browsing session from a laptop to a phone when we leave the house or en-
abling remotely executing Flash scripts on today’s slower handhelds. There
is also the appeal of P2P systems, which may help boost bandwidth and
lower latency, which we are beginning to study.

It seems that proxying solutions are best for larger or non-interactive experi-
ences. It is not always clear when to make this distinction: for example, Gmail
has shown that even though emails should be stored on the client, email
search should be performed off-site. Finally, we note that computations that
are too intensive for a client device will likely be performed in parallel, and,
in a sense, they are probably even better suited for parallelization. Off-device
computation will happen, but with many caveats. Understanding the stand-
alone and integrated case is attractive, although we argue that the on-device
case is emerging and should be exploited.

We recently examined CSS selectors, a pattern language for associat-
ing style rules with elements of a page. Developers use selectors to specify
rules like “p.content a {font-style: italic}”, meaning that links within content
paragraphs should be italicized, where “p.content a” is the selector. When
loading a large Web page with many style rules, such as Slashdot in Fire-
fox, determining style constraints takes 100ms, with most of this spent in
matching selectors. Selector speed has prompted David Hyatt, who worked
on the CSS engines for Firefox and Safari as well as the overall language
specification, to declare that the new “CSS3 selectors . . . really shouldn’t be
used at all if you care about page performance” [5]; indeed, tuned Web sites,
like many by Google, do not use any selectors.

Over several months of on-and-off development, we implemented a new CSS
selector engine from scratch. We started with the optimizations described
in existing browsers and then advanced to our own sequential and parallel
ones, until we achieved a matching time of 2ms on Facebook and Slashdot
with an unoptimized pre-processing step of 5ms. Chart 1 shows the ultimate
speedups from parallelizing the existing sequential algorithm (4x) vs. focus-
ing on further sequential optimizations (11x) and then parallelizing (41x).
The tests are on a 2.66GHz Nehalem prototype (two hardware threads per
core and four cores on a socket). Not visible in the graph is how long it took
to attain these optimizations: parallelization was significantly easier and,
unlike with sequential optimizations, such as for better cache use, succes-
sive optimizations were generally complementary. Parallelization was only
easy to an extent; the effort to go from one to four cores was less than that
of going from four to five. Finally, we note that given the small size of these
computations, it is not clear how to offload them to another device.

We are facing an exciting time of architectural transition. Productivity con-
cerns involving high-level languages, large libraries, and software as a ser-
vice are emerging as important enough to displace traditional low-level
approaches. However, we are finding the need for much better performance,
especially in the emerging computing class of handhelds. There is a lot of
room for sequential optimizations, but as the opportunity cost for them is
high, we instead advocate focusing more on exploiting hardware-driven op-
timizations. This is taking place in the form of local, parallel computations
and networked (and still parallel) computations. Overall, we found parallel-
izing on-device browser computations to be the most enticing direction for
improving performance.

Professor Ras Bodik has been heading our browser group, with Chris Jones
(now at Mozilla) as another founding member. Professor Krste Asanović,
Shaoib Kamil, Kaushik Datta, Rajesh Nishtala, and Christopher Batten of the
Parallelism Lab and Robert O’Callahan and David Mandelin at Mozilla have
provided valuable advice throughout our work.

[1] Chris Jones, Rose Liu, Leo Meyerovich, Krste Asanović, and Rastislav
Bodik, “Parallelizing the Web Browser,” Proceedings of the 1st USENIX Work-
shop on Hot Topics in Parallelism (HotPar ’09), March 2009.

[2] Shreesh Dubey, “AJAX Performance Measurement Methodology for
 Internet Explorer 8 Beta 2,” CoDe Magazine 5(3), 2008: http://www
.code-magazine.com/Article.aspx?quickid=0811102.

[3] Microsoft, “Measuring Browser Performance: Understanding Issues in
Benchmarking and Performance Analysis,” 2009: http://www.microsoft
.com/downloads/details.aspx?displaylang=en&FamilyID=cd8932f3
-b4be-4e0e-a73b-4a373d85146d.

[4] Todd Proebsting, “Proebsting’s Law”: http://research.microsoft.com/
en-us/um/people/toddpro/papers/law.htm.

[5] Shaun Inman, “CSS Qualified Selectors”: http://www.shauninman.com/
archive/2008/05/05/css_qualified_selectors.

