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ABSTRACT
The web browser is a CPU-intensive program. Especially
on mobile devices, webpages load too slowly, expending sig-
nificant time in processing a document’s appearance. Due
to power constraints, most hardware-driven speedups will
come in the form of parallel architectures. This is also true
of mobile devices such as phones and e-books. In this pa-
per, we introduce new algorithms for CSS selector matching,
layout solving, and font rendering, which represent key com-
ponents for a fast layout engine. Evaluation on popular sites
shows speedups as high as 80x. We also formulate the lay-
out problem with attribute grammars, enabling us to not
only parallelize our algorithm but prove that it computes in
O(log) time and without reflow.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Benchmarking, graphical user interfaces (GUI),
theory and methods; I.3.2 [Computer Graphics]: Graph-
ics Systems—Distributed/network graphics; I.3.1 [Computer
Graphics]: Hardware Architecture—Parallel processing

General Terms
Algorithms, Design, Languages, Performance, Standardiza-
tion

Keywords
attribute grammar, box model, CSS, font, HTML, layout,
mobile, multicore, selector

1. INTRODUCTION
Web browsers should be at least a magnitude faster. Cur-

rent browser performance is insufficient, so companies like
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Google manually optimize typical pages [14] and rewrite
them in low-level platforms for mobile devices [1]. As we
have previously noted, browsers are increasingly CPU-bound [8,
16]. Benchmarks of Internet Explorer [17] and Safari reveal
40-70% of the average processing time is spent on visual lay-
out, which motivates our new components for layout. Cru-
cial to exploiting coming hardware, our algorithms feature
low cache usage and parallel evaluation.

Our primary motivation is to support the emerging and
diverse class of mobile devices. Consider the 85,000+ appli-
cations specifically written for Apple’s iPhone and iTouch
devices [10]. Alarmingly, instead of just refactoring existing
user interfaces for the smaller form factor, sites like yelp.com
and facebook.com fully rewrite their clients with low-level
languages: mobile devices suffer 1-2 magnitudes of sequen-
tial performance degredation due to power constraints, mak-
ing high-level languages too costly. As we consider succes-
sively smaller computing classes, our performance concerns
compound. These applications represent less than 1% of on-
line content; by optimizing browsers, we can make high-level
platforms like the web more viable for mobile devices.

Our second motivation for optimizing browsers is to speedup
pages that already take only 1-2 seconds to load. A team at
Google, when comparing the efficacy of showing 10 search
results vs. ∼30, found that speed was a significant latent
variable. A 0.5 second slowdown corresponded to a 20%
decrease in traffic, hurting revenue [14]. Other teams have
confirmed these findings throughout Facebook and Google.
Improving clientside performance is now a time-consuming
process: for example, Google sites sacrifice the structuring
benefits of style sheets in order to improve performance. By
optimizing browsers, we hope enable developers to instead
focus more on application domain concerns.

Webpage processing is a significant bottleneck. Figure 1
compares loadtimes for popular websites on a 2.4 Ghz Mac-
Book Pro to those on a 400Mhz iPhone. We used the same
wireless network for the tests: loadtime is still 9x slower
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Figure 1: 400Mhz iPhone vs. 2.4Ghz MacBook Pro load-
times using the same wireless network.



on the handheld, suggesting the network is not entirely to
blame. Consider the 6x clock frequency slowdown when
switching from a MacBook Pro to an iPhone, as well as
the overall simplification in architecture: the 9x slowdown
in our first experiment is not surprising. Assuming network
advances make mobile connections at least as fast as wifi,
browsers will be increasingly CPU-bound.

To improve browser performance, we should exploit par-
allelism. The power wall – constraints involving price, heat,
energy, transistor size, clock frequency, and power – is forc-
ing hardware architects to apply increases in transistor counts
towards improving parallel performance, not sequential per-
formance. This includes mobile devices; dual core mobile
devices are scheduled to be manafactured in 2010 and we
expect mobile devices with up to 8 parallel hardware con-
texts in roughly 5 years. We are building a parallel web
browser so that we can continue to rely upon the traditional
hardware-driven optimization path.

Our contributions are for page layout tasks. We measured
that at least 40% of the time in Safari is spent in these tasks
and others report 70% of the time in Internet Explorer [5].
Our paper contributes algorithms for the following presen-
tation tasks in CSS (Cascading Style Sheets [4, 12]):

1. Selector Matching. A rule language is used to asso-
ciate style constraints with page elements, such as declaring
that pictures nested within paragraphs have large margins.
We present a new algorithm to determine, for every page
element, the associated set of constraints.

2. Parallel, Declarative Layout Solving. Con-
straints generated by the selector matching step must be
solved before a renderer can map element shapes into a grid
of pixels. The output of layout solving is the sizes and po-
sitions of elements. We present the first parallel algorithm
for evaluating a flow-based layout.

CSS is informally specified, aggravating use and adher-
ance. In contrast, we separate layout specification from im-
plementation by using attribute grammars. We provide the
first declarative specification of core layout features that are
not presented by the closest previous approach, CCSS [2].
Examples of analytic benefits are our proofs of layout solving
termination in log time and without performing any reflows.

3. Font handling. We optimize use of FreeType 2 [20],
a font library common to embeded systems like the iPhone.

After an overview of browser design (Section 2) and the
roles of our algorithms (Section 3), we separately introduce
and evaluate our algorithms (Sections 4, 5, and 6). We refer
readers to our project site [15] for source code, test cases,
benchmarks, and extended discussion.

2. BACKGROUND
Originally, web browsers were designed to render hyper-

linked documents. Later, JavaScript was introduced to en-
able scripting of simple animations and content transitions
by dynamically modifying the document. Today, AJAX ap-
plications rival their desktop counterparts. Browsers are
large and complex: WebKit providing both layout and JavaScript
engines for many systems, is over 5 million lines of code.

We show the basic data flow within a browser in Fig-
ure 2 [8]. Loading an HTML page sets off a cascade of events:
the page is lexed, parsed, and translated into a tree model-
ing the document object model (DOM). Objects referenced
by URLs is fetched and added to the document. Intertwined
with receiving remote resources, the page layout is incremen-
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Figure 2: Data flow in a browser.

tally solvend and painted on to the screen. Script objects
are loaded and processed in a blocking manner, again inter-
twined with the incremental layout and painting processes.
For simplicity, our current algorithms assume resources are
locally available and there is no scripting.

To determine optimization targets, we profiled the latest
release version of Safari (4.0.3), an optimized browser. Us-
ing the Shark profiler to sample the browser’s callstack every
20µs, we estimate lowerbounds on CPU times when loading
popular pages of the tasks shown in Figure 3. For each page,
using an empty cache and a fast network, we started profil-
ing at request time and manually stopped when the majority
of content was visible. Note that, due to the callstack sam-
pling approach, we ignore time spent idling (e.g., network
time and post page load inactivity). We expect at least a
magnitude of performance degredation for all tasks on mo-
bile devices because our measurements were on a laptop that
consumes about 70W under load.

We examined times for the following tasks: Flash repre-
sents the Flash virtual machine plugin, the network library
handles HTTP communication (and does not include wait-
ing on the network), parsing includes tasks like lexing CSS
and generating JavaScript bytecodes, and JavaScript time
represents executing JavaScript. We could not attribute all
computations, but suspect much of the unclassified for sam-
ples were in layout, rendering, or CSS selector computations
triggered by JavaScript, or additional tasks in creating basic
HTML and CSS data structures.

Our performance profile shows bottlenecks. Native library
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deviantART 384 119 224 102 171 65 29 20
Facebook 400 208 139 130 164 94 41 17

Gmail 881 51 404 505 471 437 283 16
MSNBC 498 130 291 258 133 95 85 23

Netflix 251 93 130 95 49 20 21 11
Slashdot 390 1092 94 109 119 110 63 6

AVERAGE ms 495 280 233 194 176 113 72 19
AVERAGE % 31 18 15 12 11 7 4 1

Figure 3: Task times (ms) on page load (2.4GHz laptop).
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Figure 4: Page load presentation time (ms), 2.4GHz laptop.

computations like parsing and layout account for at least
half of the CPU time, which we are optimizing in our par-
allel browser. In contrast, optimizing JavaScript execution
on these sites would eliminate at most 7% of the average at-
tributed CPU time. In this paper, without even counting
the unclassified operations, we present algorithms for 34%
of the CPU time.

3. OPTIMIZED ALGORITHMS
Targeting a kernel of CSS, we redesigned the algorithms

for taking a parsed representation of a page and processing it
for display. In the following sections, we focus on bottlenecks
in CSS selectors (18%), layout (4%), and rendering (12%).
Figure 4 further breaks down these task times in Safari and
presents percentages in terms of the tasks shown. Rendering
is split between text, image, and box rendering. We do not
present algorithms for image rendering as it can handled as
a simplified form of our glyph rendering algorithm nor for
box rendering as an algorithm analaogous to our layout one
can be used. While the figure differentiates between text
and box layout, our layout algorithm treats them uniformly.

Figure 5 depicts, at a high level, the sequence of our par-
allel algorithms. For input, a page consists of an HTML
tree of content, a set of CSS style rules that associate lay-
out constraints with HTML nodes, and a set of font files.
For output, we compute absolute element positions. Each
step in the figure shows what information is computed and
depicts the parallelization structure to compute it. Arrow-
less lines show tasks are independent while arrows describe
a task that must complete before the pointed to task may
compute. Generally, HTML tree elements (the nodes) corre-
spond to tasks. Our sequence of algorithms is the following:

Step 1 (selector matching) determines, for every HTML
node, which style constraints apply to it. For example, style
rule div a {font-size: 2em} specifies that an “a” node
descendant from a“div”node has a font size twice of its par-
ent’s. For parallelism, rules may be matched against nodes
independently of each other and other nodes.

Steps 2, 4-6 (box and text layout) solve layout con-
straints. Each step is a single parallel pass over the HTML
tree. Consider a node’s font size, which is constrained as a
concrete value or a percentage of its parent’s: step 2 shows
that once a node’s font size is known, the font size of its
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Figure 5: Parallel CSS processing steps.

children may be determined in parallel. Note text is on the
DOM tree’s fringe while boxes are intermediate nodes.

Step 3 (glyph handling) determines what characters
are used in a page, calls the font library to determine char-
acter constraints (e.g., size and kerning), and renders unique
glyphs. Handling of one glyph is independent of handling
another. Initial layout solving must first occur to determine
font sizes and types. Glyph constraints generated here used
later in layout steps sensitive to text size.

Step 7 (painting or rendering) converts each shape
into a box of pixels and blends it with overlapping shapes.

We found parallelism within every step, and, in some
cases, even obtained sequential speedups. While our lay-
out process has many steps, it essentially interleaves four
algorithms: a CSS selector matcher, a constraint solver for
CSS-like layouts, and a glyph renderer. We can now individ-
ually examine the first three algorithms, where we achieve
speedups from 3x to 80x (Figures 8, 13, and 16). Beyond
the work presented here, we are applying similar techniques
to related tasks between steps 1 and 2 like cascading and
normalization, and GPU acceleration for step 8, painting.

4. CSS SELECTOR MATCHING
This section describes and evaluates our algorithm for CSS

selector matching. Our innovations are in parallelization and
in imporving memory locality.

4.1 Problem Statement
Recall that CSS rules declaratively associate style con-

straints with document nodes. The input to CSS rule match-
ing is a document tree and a CSS style sheet. A style sheet
is a list of CSS rules. A CSS rule consists of a selector and
a set of style constraints that are to be associated with the
document nodes that match the selector. Consider the rule
p img { margin: 10px; } which specifies that the margin
of images in a paragraph should be 10 pixels. An img node is
nested in a paragraph if it is a descendant of a p node. The



term p img is a selector and the term { margin: 10px; }

is the (singleton) set of style constraints. The output of rule
matching is an annotation that maps each DOM node to the
set of CSS rules that match this node.

When multiple rules match a node, conflicting constraints
may be imposed on a node atribute (e.g., on its color).
Conflicting constraints are resolved according to “cascading”
rules. We have not optimized this phase.

The Selector Language. A rule with a selector s matches
a document node n if the path from the document root to
n matches the selector s. We observed that CSS rules in
common use fall into a selector language that is a subset of
regular expressions. This common subset of CSS covers over
99% of the rules we encountered on popular sites listed on
alexa.com. We define our efficient algorithm for this regular
subset of CSS; selectors outside this subset are handled with
an unoptimized algorithm.

The regular subset of CSS selectors is defined in Fig-
ure 6(a). The operator , denotes disjunction: the rule
matches if any of the selectors in the rule matches the
path. A node predicate nodePred matches a node if the
predicate’s tag, id, and class attributes are a subset of the
node’s attributes. There is at least one tag, id, or class
attribute in the predicate. For an example, the node <div

id="account" class="first,on"/> is matched by the sym-
bol div.first. The operator s1 < s2 signifies that the node
matching the selector s1 must be the parent of the node
matching the selector s2. The operator s1 s2 signifies that
the node matching the selector s1 must a predecessor of the
node matching the selector s2.

The translation of thes regular subset of CSS selectors is
given in Figure 6(b). The path from a node to the doc-
ument root is a string, with each character representing a
node. Specifically, the character represents a node match-
ing a node predicate. The regular expression operator “|”
stands for disjunction and “.*” stands for a string of arbi-
trary characters.

4.2 The CSS Matching Algorithm
Popular sites like Slashdot.org may have thousands of

document nodes and thousands of rules to be matched against
each document node. Figure 7 presents pseudocode for our
selector matching algorithm, including many (but not all)
of our optimizations. We one assumptions to simplify the
presentation: we assume the selector language is restricted
to the one defined above.

Our algorithm first creates hashtables associating attributes
with selectors that may end with them. It then, in 3 passes
over the document, matches nodes against selectors. Finally,

(a) Selector language

rule = sel | rule "," sel
sel =

nodePred
| sel "<" sel
| sel " " sel

nodePred =
tag (id? class*)

| id class* | class+

(b) Regex subset

rule = sel | rule "|" sel
sel =

symbol
| sel sel
| sel ".*" sel

Figure 6: Selector subset to regular expression translation.

INPUT: doc : Node Tree, rules : Rule Set
OUTPUT: nodes : Node Tree where Node =
{id: Token, classes: Token List, tag: Token, //input
rules: Rule Set} //output

idHash, classHash, tagHash = {} //generate lookup tables
for r in rules: //redundancy elimination and hashing
for s in rule.predicates:
if s.last.id:
idDash[s].map(s.last.id, r) //assume multimap is

else if s.last.classes: //automatically generated
classHash[s].map(s.last.classes.last, r)

else: tagDash[s].map(s.last.tag, r)

random_parallel_for n in doc: //hash tile: ID predicates
n.matchedList = [].preallocate(15) //locally allocate
if n.id: attemptHashes(n, idHash, n.id)

random_parallel_for n in doc: //hash tile: class predicates
for c in n.classes:
attemptHashes(n, classHash, c)

random_parallel_for n in doc: //hash tile: tag predicates
if n.tag: attemptHashes(n, tagHash, n.tag)

random_parallel_for n in doc: //reduction: determine
for rules in n.matchedList: // rules from selectors
for r in rules:
n.rules.insert(r) //note rules is a set

def attemptHashes(n, hash, idx):
for (s, rules) in hash[idx]:
if (matches(n, s)): //tight right-to-left loop
n.matchedList.push(rules) //overlapping list of sets

Figure 7: Most of our selector matching algorithm kernel.

it performs a post-pass to format the results.
Some of our optimizations are adopted from WebKit:
Hashtables. Consider selector“p img”: only images need

to be checked against it. For every tag, class, and id in-
stance, a preprocessor create a hashtable associating at-
tributes with the restricted set of selectors that end with
it, such as associating attribute img with selectorp img. In-
stead of checking the entire stylesheet against a node, we
perform the hashtable lookups on its attributes and only
check these restricted selectors.

Right-to-left matching. For a match, a selector must
end with a symbol matching the node. Furthermore, most
selectors can be matched by only examining a short suffix of
the path to a node. By matching selectors to paths right-to-
left rather than left-to-right, we exploit these two properties
to achieve a form of short-circuiting in the common case.

We do not examine the known optimization of using a trie
representation of the document (based on attributes). In
this approaches, matches on a single node of the collapsed
tree may signify matches on multiple nodes in the preimage.

We contribute the following optimizations:
Redundant selector elimination. Due to the weak

abstraction mechanisms in the selector language, multiple
rules often use the same selectors. Preprocessing avoids re-
peatedly checking the same selector against the same node.

Hash Tiling. When traversing nodes, the hashtable asso-
ciating attributes with selectors is randomly accessed. The
HTML tree, hashtable, and selectors do not fit in L1 cache
and sometimes even L2: cache misses for them have a 10-
100x penalty. We instead partition the hashtable, perform-
ing a sequence of passes through the HTML tree, where each
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Figure 8: Selector speedup relative to a reimplementation (column 2) of Safari’s algorithm (column 1). Labels Cilk<i> and
TBB<i> represent the number of contexts. Column Safari on a 2.4GHz laptop, rest on a 4-core × 8-socket 2.3GHz Opteron.

pass uses one partition (e.g., idHash).
Tokenization. Representing attributes likes tag identi-

fiers and class names as unique integer tokens instead of
as strings decreases the size of data structures (decreasing
cache usage), and also shortens comparison time within the
matches method to equating integers.

Parallel document traversal. Currently, we only par-
allelize the tree traversals. We map the tree into an array of
nodes, and use a work-stealing library to allocate chunks of
the array to cores. The hash tiling optimization still applies
by performing a sequence of parallel traversals (one for each
of the idHash, classHash, and tagHash hashtables).

Random load balancing. Determining which selectors
match a node may take longer for one node than another.
Neighbors in a document tree may have similar attributes
and therefore the same attribute path and processing time.
This similarity between neighbors means matching on differ-
ent subtrees may take very different amount of times, leading
to imbalance for static scheduling and excessive scheduling
for dynamic approaches. Instead, we randomly assign nodes
to an array and then perform work-stealing on a parallel
loop, decreasing the amount of steals.

Result pre-allocation. Instead of calling a memory al-
locator to record matched selectors, we preallocate space
(and, in the rare case it is exhausted, only then call the allo-
cator). Based on samples of webpages, we preallocate spaces
for 15 matches. This is tunable.

Delayed set insertion. The set of selectors matching a
node may correspond to a much bigger set of rules because
of our redundancy elimination. When recording a match,
to lower memory use, we only record the selector matched,
only later determining the set of corresponding rules.

Non-STL sets. When flattening sets of matched rules
into one set, we do not use the C++ standard template
library (STL) set data structure. Instead, we preallocate a
vector that is the size of all the potential matches (which is
an upperbound) and then add matches one by one, doing
linear (but faster) collision checks.

4.3 Evaluation
Figure 8 reports using our rule matching algorithm on

popular websites run on a 2.3 GHz 4-core × 8-socket AMD
Opteron 8356 (Barcelona). Column 2 measures our reimple-
mentation of Safari’s algorithm (column 1, run on a 2.4GHz
Intel Core Duo): our reimplementation was within 30% of
the original and handled 99.9% of the encountered CSS rules,
so it is fairly representative. GMail, as an optimization,
does not significantly use CSS: we show average speedups
with and without it (the following discussion of averages is

without it). We performed 20 trials for each measurement.
There was occasional system interference, so we dropped
trials deviating over 3x (less than 1% of the trials).

We first examine low-effort optimizations. Column “L2
opts” depicts simple sequential optimizations such as the
hashtable tiling. This yields a 4.0x speedup. Using Cilk++,
a simple 3-keyword extension of C++ for work-stealing task
parallelism, we spawn selector matching tasks during the
normal traversal of the HTML tree instead of just recur-
ring. Seqential speedup dropped to 3.8x, but, compensat-
ing, strong scaling was to 3 hardware contexts with smaller
gains up to 7 contexts (“Cilk” columns). Overall, speedup is
13x and 14.8x with and without GMail.

We now examine the other sequential optimizations (Sec-
tion 4.2) and changing parallelization strategy. The sequen-
tial optimzations (column“L1 opts”) exhibit an average total
25.1x speedup, which is greater than the speedup from using
Cilk++, but required more effort. Switching to Intel’s TBB
library for more verbose but lower footprint task parallelism
and using a randomized for-loop is depicted in the “TBB”
columns. As with Cilk++, parallelization causes speedup
to drop to 19x in the sequential case, with strong scaling
again to 3 hardware contexts that does not plateau until
6 hardware contexts. Speedup variance increases with scal-
ing, but less than when using the tree traversal (not shown).
With and without GMail, the speedup is 55.2x and 64.8x,
respectively.

Overall, we measured total selector matching runtime dropped
from an average 204ms when run on the AMD machine down
to an average 3.5ms. Given an average 284ms was spent in
Safari on the 2.4GHz Intel Core 2 Duo MacBook Pro, we
predict unoptimized matching takes about 3s on a hand-
held. If the same speedup occurs on a handheld, time would
drop down to about 50ms, solving the bottleneck.

5. LAYOUT CONSTRAINT SOLVING
Layout consumes an HTML tree where nodes have sym-

bolic constraint attributes set by the earlier selector match-
ing phase. Layout solving determines details like shape and
text size and position. A subsequent step, painting (or ren-
dering), converts these shapes into pixels: while we have
reused our basic algorithm for a simple multicore renderer,
we defer examination for future work that investigates the
use of data-parallel hardware like GPUs.

For intuition, intermediate nodes represent rectangles vi-
sually nested within the rectangle of their parent (a box lay-
out) and are adjacent to boxes of their sibling nodes. They
are subject to constraints like word-wrapping (flow layout



constraints). Text and images are on the tree’s fringe and
have constraints such as letter size or aspect ratio. To solve
for one attribute, many other nodes and their attributes are
involved. For example, to determine the width of a node, we
must consider width constraints of descendant nodes, which
might depend upon text size, which might be a function of
the current node’s text size, etc. It is difficult to implement
layout correctly, and more so efficiently.

As with selector matching, we do not ask that developers
make special annotations to benefit from our algorithms.
Instead, we focus on a subset of CSS that is large enough to
reveal implemenation bugs in all mainstream browsers yet is
small enough to show how to exploit parallelism. This subset
is expressive: it includes the key features that developers
endorse for resizable (liquid) layout. Ultimately, we found
it simplest to define a syntax-driven transformation of CSS
into a new, simpler intermediate language, which we dub
Berkeley Style Sheets (BSS).

We make three contributions for layout solving:
Performance. We show how to decompose layout into

multiple parallel passes. In Safari, the time spent solving
box and text constraints is, on average, 15% of the time
(84ms on a fast laptop and we expect 1s on a handheld).

Specification. We demonstrate a basis for the declara-
tive specification of CSS. The CSS layout standard is infor-
mally written, cross-cutting, does not provide insight into
even the näıve implementation of a correct engine, and un-
derspecifies many features. As a result, designer produc-
tivity is limited by having to work around functionally in-
correct engine implementations. Troubling, there are also
standards-compliant feature implementations with function-
ally inconsistent interpretations between browsers. We spent
significant effort in understanding, decomposing, and then
recombining CSS features in a way that is more orthogonal,
concise, and well-defined. As a sample benefit, we are ex-
perimenting with automatically generating a correct solver.

Proof. We prove layout solving is at most linear in the
size of the HTML tree (and often solvable in log time). Cur-
rently, browser developers cannot even be sure that layout
solving terminates. In practice, it occasionally does not [19].

Due to space constraints, we only detail BSS0, a simple
layout language for vertical and horizontal boxes. It is sim-
ple enough to be described with one attribute grammar, but
complicated enough that there may be long dependencies be-
tween nodes in the tree and the CSS standard does not define
how it should be evaluated. We informally discuss BSS1, a
multipass grammar which supports shrink-to-fit sizing, and
BSS2, which supports left floats (which we believe are the
most complicated and powerful elements in CSS2.1).

5.1 Specifying BSS0
BSS0, our simplest language kernel, is for nested layout of

boxes using vertical stacking or word-wrapping. We provide
an intuition for BSS0 and our use of an attribute grammar to
specify it. Even for a small language, we encounter subtleties
in the intended meaning of combinations of various language
features and how to evaluate them.

Figure 9 illustrates the use of the various constraints in
BSS0 corresponding to the output in Figure 10. The outer-
most box is a vertical box: its children are stacked vertically.
In contrast, its second child is a horizontal box, placing its
children horizontally, left-to-right, until the right boundary
is reached, and then word wrapping. Width and height con-

V BOX[wCnstrnt = 200px, hCnstrnt = 150px](

V BOX[wCnstrnt = 80%, hCnstrnt = 15%](),

HBOX[wCnstrnt = 100px, hCnstrnt = auto](

V BOX[wCnstrnt = 40px, hCnsntrt = 15px](),

V BOX[wCnstrnt = 20px, hCnstrnt = 15px](),

V BOX[wCnstrnt = 80px, hCnstrnt = 15px]()))

Figure 9: Sample BSS0 layout constraints input.

VBOX        wCnstrnt=80% 
VBOX    wCnstrnt=200px 

hCnstrnt=shrink 

hC
nstrnt=15%

 
HBOX       wCnstrnt=100px  

hC
nstrnt=150px 

Figure 10: Sample BSS0 layout constraints output.

straints are concrete pixel sizes or percentages of the parent.
Heights may also be set to auto: the height of the horizon-
tal box is just small enough to contain all of its children.
BSS1 [15] shows extending this notion to width calculations
adds additional but unsurprising complexity.

We specify the constraints of BSS0 with an attribute gram-
mar (Figure 11). The goal is, for every node, to determine
the width and height of the node and its x and y position
relative to its parent. The bottom of the figure defines the
types of the constraints and classes V and H specify, for ver-
tical and horizontal boxes, the meaning of the constraints.

In an attribute grammar [11], attributes on each node are
solved during tree traversals. An inherited attribute is di-
rectly dependent upon attributes of its parent node, such as
a width being a percentage of its parent width’s. A synthe-
sized attribute is directly dependent upon attributes of its
children. For example, if a height is set to auto – the sum of
the heights of its children – we can solve them all in an up-
wards pass. Both inherited and synthesized attributes may
be functions of both inherited and synthesized attributes. In
unrestricted attribute grammars, indirect dependencies for
an attribute may be both above and below in the tree: a
traversal may need to repeatedly visit the same node, po-
tentially with non-deterministic or fixed-point semantics!

BSS0 has the useful property that inherited attributes
are only functions of other inherited attributes: a traver-
sal to solve them need only observe a partial order going
downwards in the tree. Topological, branch-and-bound, and
depth-first traversals all do this. Similarly, synthesized at-
tributes, except on the fringe, only depend upon other syn-
thesized attributes: after inherited attributes are computed,
a topologically upwards traversal may compute the synthe-
sized ones in one pass. In the node interface (Figure 11),
we annotate attributes with dependency type (inherited or
synthesized). In Section 5.3, we see this simplifies paral-
lelization. By design, a downwards and then upwards pass



interface Node // passes
@input children, prev, wCnstrnt, hCnstrnt
@grammar1: // (top-down, bottom-up)
@inherit width // final width
@inherit th // temp height for bad constraint
@inherit relx // x position relative to parent
@synthesize height // final height
@synthesize rely // y position relative to parent

class V implements Node // semantic actions
@grammar1.inherit // top-down
for c in children:

c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)
c.relx = 0

@grammar1.synthesize // bottom-up
height = joinS(th, sum([c.height | c in children]))
if children[0]: children[0]rely = 0
for c > 0 in children:

c.rely = c.prev.rely + c.prev.height

class H implements Node // semantic actions
@grammar1.inherit // top-down
for c in children:

c.th = sizeS(th, c.hCnstrnt) //might be auto
c.width = sizeS(width, c.wCnstrnt)

if children[0]:
children[0]relx = 0

for c > 0 in children:
c.relx = c.prev.relx + c.prev.width > width ? // wordwrap
0 : c.prev.relx + c.prev.width

@grammar1.synthesize // bottom-up
if children[0]:
children[0]rely = 0

for c > 0 in children:
c.rely = c.prev.relx + c.prev.width > width ? // wordwrap
c.prev.rely + c.prev.height : c.prev.rely

height =
joinS(th, max([c.rely + c.height | c in children]))

class Root constrains V // V node with some values hardcoded
th = 100 // browser specifies all of these
width = 100, height = 100
relx = 0, rely = 0

function sizeS (auto, p %) -> auto // helpers
| (v px, p %) -> v * 0.01 * p px
| (v, p px) -> p px
| (v, auto) -> auto

function joinS (auto, v) -> v
| (p px, v) -> p

R→ V | H // types

V → H∗ | V ∗

H → V ∗

V ::{wCnstrnt : P | PCNT, hCnstrnt : P | PCNT | auto

children : V list, prev : V,

th : P | auto,

width = P, relx : P, rely : P, height : P}
H ::{wCnstrnt : P | PCNT, hCnstrnt : P | PCNT | auto

children : V list, prev : V,

th : P | auto,

width = P, relx : P, rely : P, height : P}
Root ::V where {width : P, height : P, th : P}

P :: R px

PCNT :: P % where P = [0, 1] ⊂ R

Figure 11: BSS0 passes, constraints, helpers, grammar, and
types.

suffices for BSS0 (steps 2 and 4 of Figure 5).
In our larger languages, [15] inherited attributes may also

access synthesized attributes: two passes no longer suffice.
In these extensions, inherited attributes in the grammar
are separated by an equivalence relation, as are synthe-
sized ones, and the various classes are totally ordered: each
class corresponds to a pass. All dependency graphs of at-
tribute constraints abide by this order. Alternations be-
tween sequences of inherited and synthesized attributes cor-
respond to alternations between upwards and downwards
passes, with the total amount of passes being the number of
equivalence classes. Figure 5 shows these passes. The order-
ing is for the pass by which a value is definitely computable
(which our algorithms make a requirement); as seen with
the relative x coordinate of children of vertical nodes, there
are often opportunties to compute in earlier passes.

5.2 Surprising and Ambiguous Constraints
Even for a seemingly simple language like BSS0, we see

scenarios where constraints have a surprising or even unde-
fined interpretation in the CSS standard and browser imple-
mentations. Consider the following boxes:

V[hCnstrnt=auto](V[hCnstrnt=50%](V[hCnstrnt=20px]))
Defining the height constraints for the outer 2 vertical

boxes based on their names, the consistent solution would
be to set both heights to 0. Another approach is to ignore
the percentage constraint and reinterpret it as auto. The
innermost box size is now used: all boxes have height 20px.
In CSS, an analogous situation occurs for widths. The stan-
dard does not specify what to do; instead of using the first
approach, our solution uses the latter (as most browsers do).

Another subtlety is that the width and height of a box
does not restrict its children from being displayed outside of
its boundaries. Consider the following:

V[hCnstrnt=50px](V[hCnstrnt=100px])
Instead of considering such a layout to be inconsistent and

rejecting it, BSS0 (like CSS) accepts both constraints. Lay-
out proceeds as if the outer box really did successfully con-
tain all of its children. Depending on rendering settings, the
overflowing parts of the inner box might still be displayed.

We found many such scenarios where the standard is un-
defined, or explicitly or possibly by accident. In contrast,
our specification is well-defined.

5.3 Parallelization
Attribute grammars expose opportunties for paralleliza-

tion [9]. First, consider inherited attributes. Data depen-
dencies flow down the tree: given the inherited attributes of
a parent node, the inherited attributes of its children may be
independently computed. Second, consider synthesized at-
tributes: a node’s childrens’ attributes may be computed in-
dependently. Using the document tree as a task-dependency
graph, arrows between inherited attributes go downwards,
synthesized attribute dependencies upwards, and the fringe
shows synthesized attributes are dependent upon inherited
attributes from the previous phase (Figure 5).

A variety of parallel algorithms are now possible. For
example, synthesized attributes might be computed with
prefix scan operations. While such specialized and tuned
operators may support layout subsets, we found much of
the layout time in Safari to be spent in general or random-
access operations (e.g., isSV G()), so we want a more general
structure. We take a task-parallel approach (Figure 12). For



class Node
def traverse (self, g):
self[’calcInherited’ + g]();
@autotune(c.numChildren) //sequential near fringe
parallel_for c in self.children:
c.traverse(g) //in parallel to other children

self[’calcSynthesized’ + g]();
class V: Node

def calcInheritedG1 (self):
for c in self.children:
c.th = sizeS(self.th, c.hCnstrnt)
c.width = sizeS(self.tw, c.wCnstrnt)

def calcSynthesizedG1 (self):
self.height =
joinS(self.th,

sum([c.height where c in self.children]))
if self.children[0]: self.children[0].rely = 0
for c > 0 in sel.children:
c.rely = c.prev.rely + c.prev.height

self.prefWidth =
join(self.tw,

max([c.prefWidth where c in self.children]))
self.minWidth =
join(self.tw,

max([c.minWidth where c in self.children]))
...

...

for g in [’G1’, ... ]: //compute layout
rootNode.traverse(g)

Figure 12: BSS0 parallelization psuedocode. Layout calcu-
lations are implemented separately from the scheduling and
synchronization traversal function.

each node type and grammar, we define custom general (se-
quential) functions for computing inherited attributes (cal-
cInherited()) and synthesized attributes (calcSynthesized()).
Scheduling is orthogonally handled as follows:

We define parallel traversal functions that invoke layout
calculation functions (semantic actions [11]). One grammar
is fully processed before the next. To process a grammar,
a recursive traversal through the tree occurs: inherited at-
tributes are computed for a node, tasks are spawned for pro-
cessing child nodes, and upon their completion, the node’s
synthesized attributes are processed. Our implementation
uses Intel’s TBB, a task parallel library for C++. Tradi-
tional optimizations apply, such as tuning for when to se-
quentially process subtrees near the bottom of the HTML
tree instead of spawning new tasks. Grammar writers define
sequential functions to compute the attributes specified in
Figure 11 given the attributes in the previous stages; they
do not handle concerns like scheduling or synchronization.

5.4 Performance Evaluation
Encoding a snapshot of slashdot.org with BSS1, we found

that box layout time takes only 1-2ms with another 5ms for
text layout. In contrast, our profile of Safari attributes 21ms
and 42ms, respectively (Figure 4). We parallelized our im-
plementation, seeing 2-3x speedups (for text; boxes were too
fast). We surmise our grammars are too simple. We then
performed a simple experiment: given a tree with as many
nodes as Slashdot, what if we performed multiple passes as
in our algorithm, except uniformly spun on each node so
that the total work equals that of Slashdot, simulating the
workload in Safari? Figure 13 shows, without trying to op-
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Figure 13: Simulated layout parallelization speedup.
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Figure 14: Speculative evaluation for floats.

timize the computation any further and using the relatively
slow but simple Cilk++ primitives, we strongly scale to 3
cores and gain an overal 4x speedup. The takeaway is that
our algorithm exposes exploitable parallelism; as our engine
grows, we will be able to tune it as we did with selectors.

5.5 Floats
Advanced layouts such as multiple columns or liquid (mul-

tiresolution) flows employ floating elements. For example,
Figure 14(d) depicts a newspaper technique where images
float left and content flows around them. Floats are am-
biguously defined and inconsistently implemented between
browsers; our specification of them took significant effort
and only supports left (not right) floats. We refer to our
extended version [15] for more detailed discussion.

A revealed weakness of our approach in BSS0 and BSS2
is that floating elements may have long sequential depen-
dencies. For example, notice that attempting to solve the
second paragraph in Figure 14(b) without knowing the po-
sitions of elements in the first leads to an incorrect layout.
Our solution is to speculatively evaluate grammars (Fig-
ures 14(a), (b)) and then check for errors (Figure 14(c)),
rerunning grammars that misspeculate (Figure 14(d)). Our
specification-driven approach makes it clear which values
need to be checked.

5.6 Termination and Complexity
Infinite loops occasionally occur when laying out web-

pages [19]. Such behavior might not be an implementation



bug: there is no proof that CSS terminates! Our specifica-
tion approach enables proof of a variety of desirable proper-
ties. At hand are termination and asymptotic complexity.

We syntactically prove for BSS0 that layout solving ter-
minates, computes in time at worst linear in HTML tree
size, and for a large class of layouts, computes in time log
of HTML tree size. Our computations are defined as an
attribute grammar. The grammar has an inherited compu-
tation phase (which is syntactically checkable): performing
it is at worst linear using a topological traversal of the tree.
For balanced trees, the traversal may be performed in par-
allel by spawning at nodes: given log(|tree|) processors, the
computation may be performed in log time. A similar ar-
gument follows for the synthesized attribute pass, so these
results apply to BSS0 overall. A corollary is that reflow
(iterative solving for the same attribute) is unnecessary.

Our extended version [15] discusses extending these tech-
niques to richer layout languages. An exemption is that we
cannot prove log-time speculative handling of floats.

6. FONT HANDLING
Font library time, such as for glyph rendering, takes at

least 10% of the processing time in Safari (Figure 4). Calls
into font libraries typically occur greedily whenever text is
encountered during a traversal of the HTML tree. For ex-
ample, to process the word “good” in Figure 14, calls for
the bitmaps and size constraints of ’g’, ’o’, and ’o’ would be
made at one point, and, later, for ’d’. A cache is used to
optimize the repeated use of ’o’.

Figure 15 illustrates our algorithm for handling font calls
in bulk. This is step 3 of our overall algorithm (Figure 5): it
occurs after desired font sizes are known for text and must
occur before the rest of the layout calculations (e.g., for
prefWidth) may occur. First, we create a set of necessary
font library requests – the combination of (character, font
face, size, and style) – and then make parallel calls to pro-
cess this information. We currently perform the pooling step
sequentially, but it can be described as a parallel reduction
to perform set unions. We use nested parallel_for calls,
hierarchically encoding affinity on font file and creating tasks
at the granularity of (font, size).

Figure 16 shows the performance of our algorithm on sev-
eral popular sites. We use the FreeType2 font library[20], In-
tel’s TBB for a work stealing parallel_for, and a 2.66GHz
Intel Nehalem with 4 cores per socket. For each site, we
extract the HTML tree and already computed font styles
(e.g., bold) as input for our algorithm. We see strong par-
allelization benefits for up to 3 cores and a plateau at 5. In
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Figure 15: Bulk and parallel font handling.
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Figure 16: Glyph rendering parallelization speedup. Col-
umn label shows number of hardware contexts used.

an early implementation, we also saw about a 2x sequential
speedup, we guess due to locality benefits from staging in-
stead of greedily calling the font library. Finally, we note
the emergence of Amdahl’s Law: before parallelization, our
sequential processor to determine necessary font calls took
only 10% of the time later spent making calls, but, after
optimizing elsewhere, it takes 30%. Our font kernel paral-
lelization succeeded on all sites with a 3-4x speedup.

7. RELATED WORK
Multi-process browsers. Browsers use processes to iso-

late pages from one another, reducing resource contention
and hardening against attacks [21]. This leads to pipeline
parallelism between components but not for the bulk of time
spent within functionally isolated and dependent algorithms.

Selectors. Our rule matching algorithm incorporates
two sequential optimizations from WebKit. Inspired by our
work, Haghighat et al [6] speculatively parallelize matching
one selector against one node – the innermost loop of algo-
rithm implicitly within function match – but do not show
scaling beyond 2 cores nor significant gains on typical sites.

Bordawekar et al [3] study matching XPath expressions
against XML files. They experiment with data partitioning
(spreading the tree across multiple processors and concur-
rently matching the full query against the partitions) and
query partitioning (partitioning the parameter space of a
query across processors). Their problem is biased towards
single queries and large files while ours is the opposite. We
perform data partitioning, though, in contrast, we also tile
queries. We perform query partitioning by splitting on dis-
junctions, though this is a work-inefficient strategy to fur-
ther empower our redundancy elimination optimization: it
is more analogous to static query optimizations. Overall, we
find it important to focus on memory, performing explicit re-
ductions, memory preallocation, tokenization, etc. Finally,
as CSS is more constrained than XPATH, we perform addi-
tional optimizations like right-to-left matching.

Glyph rendering. Parallel batch font rendering can al-
ready be found in existing systems, though it is unclear how.
We appear to be the first to propose tightly integrating it
into a structured layout system.

Specifying layout. Most document layout systems, like
TEX, are implementation-driven, occasionally with informal
specifications as is the case with CSS [12, 4]. For perfor-
mance concerns, they are typically implemented in low-level
languages. Increasingly, high-level languages like Action-



Script are used, but they are still general purpose ones.
Declarative layout. Executable specification of docu-

ment layout is a difficult problem. Heckmann et al [7] pro-
vide an implementation of LATEX formula layout in SML; a
pure functional specification in this style is too general pur-
pose for our needs. In constrast, the Cassowary project [2]
shows how to model cascading, inheritance, and a simplified
view of tables using linear and finite domain constraints.
Unfortunately, the box model is not presented (e.g., floats).
As a solution, Lin [13] proposes a pipeline of linear and ad-
hoc solvers. Neither approach currently seems to support
reasoning about layouts, does not have performance on-par
with browsers, nor encodes popular core features. In con-
trast, for a difficult and representative set of rich CSS-like
features, we provide a promising performance simulation,
declarative specification, and initial analyses (Section 5).

Attribute grammars. Attribute grammars are a well-
studied model [11]. They have primarily been examined as
a language for the specification of compilers and analyses for
Pascal-like languages. It is not obvious that attribute gram-
mar primitives are appropriate for specifying even sequential
layout. For example, Swierstra et al [18] only show how to
encode a simplification of the fixed (non-default) HTML ta-
ble algorithm. Parallelism is better understood: Jourdan
provides a survey [9] of techniques for finding and exploiting
parallelism. We contribute a more representative (and par-
allelizable) layout encoding and the technique of speculative
attributes to improve parallelization.

8. CONCLUSION
We have demonstrated algorithms for three bottlenecks of

loading a webpage: matching CSS selectors, laying out gen-
eral elements, and text processing. Our sequential optimiza-
tions feature improved data locality and lower cache usage.
Browsers are seeing increasingly little benefit from hardware
advances; our parallel algorithms show how to take advan-
tage of advances in multicore architectures. We believe such
work is critical for the rise of the mobile web.

Our specification of layout as attribute grammars is of
further interest. We have proved that, not only does lay-
out terminate, but it is possible without reflow and often
in log time. We expect further benefits from achieving a
declarative specification of the core of a layout system.

Overall, our approach simplifies tasks for browser devel-
opers and web designers dependent upon them. This work is
a milestone in our construction of a parallel, mobile browser
for browsing the web on 1 Watt.
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