
Perceiving the GUISE:
Graphical User Interface Specification Extraction

Leo Meyerovich
∗

, Raluca Sauciuc
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720-1776

{lmeyerov, sauciuc}@cs.berkeley.edu

ABSTRACT
We present a dynamic control-flow analysis and state clas-
sifier for graphical user interfaces. Search engines, end-user
programming interfaces, and automated testers exploit such
information, but are challenged by clientside and serverside
scripts obscuring it: our analysis succeeds on popular web
applications that contain both. We further motivate such
analyses. First, we introduce a new type of browser ex-
tension: a natural-language interface to third-party applica-
tions. Second, we begin to address the problem of updates
to a website changing how a third-party application must
use it: by extending our analysis to yield change-impact in-
formation, meta-applications can automatically repair their
broken interactions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Enhancement, Restructuring, reverse en-
gineering, and reengineering ; D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Elicitation methods, Tools

General Terms
Web, User interfaces, Abstract interpretation, Data mining,
Specification extraction, Programming-by-demonstration,
Metaprogramming

Keywords
Graphical user interfaces, Model extraction, Interaction mod-
els, Control-flow analysis, Change-impact analysis, Macro
repair, Natural language interfaces

∗This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

1. INTRODUCTION
Many web programs generically operate over user interfaces
of other applications. For example, some browser exten-
sions detect password fields and automate filling them in,
and others restructure a user-interface to match user and
device constraints. These are typically built by only as-
suming input websites employ the Document Object Model
(DOM), which is a tree representation to describe the docu-
ment contents a user may see and interact with at a particu-
lar instant. However, the DOM only represents the current
contents of a page: what if meta-applications could query
the full structure of a web application, not just the current
state?

Meta-applications, such as search engines, are increasingly
extracting and then exploiting the structure of website user
interfaces (UIs). Furthermore, new application domains are
arising that more deeply exploit UI models. As examples
of using variants of this knowledge, automated testers[20]
test GUI-driven software, mashup generators[9] help end-
users compose web applications, and screen scrapers[6] help
end-users extract application content. Third-party meta-
applications that generically exploit UI models are emerging
as an effective way to finally achieve a variety of application
compositions (Section 2).

Model extractors enable sophisticated program manipula-
tions, but traditional ones for the web should be considered
(static) document analyses: they fail on applications. For
example, Flash and JavaScript applications typically break
the assumption that the content visible when loading a URI
is all of the content visible from that URI, and opaque server-
side programs might use state or multiple URIs to represent
different sortings of the same data. Furthermore, websites
frequently undergo structural changes[7], so analyses must
adapt to these. Finally, large-scale spidering is often infeasi-
ble: fully crawling an application has demanding trust and
resource implications. More traditional program analyses
are insufficient as well: server-side code is generally unavail-
able, the dynamic nature of client-side code makes it difficult
to analyze[3], and it is unclear how to match program models
extracted by these techniques to user interactions.

Our approach is to exercise a GUI and learn a model from
the observed transitions, but we ignore traditional hints
like page boundaries. The challenge is to find abstractions
fine-grained enough to yield a useful model (precision), but
coarse-enough to abstract over a sufficient portion of the

true program (recall). Consider an email client that shows
a list of emails and a panel to interact with an email. In-
cluding every email directly in the model blows up the state
space[20]: precision is high, but, as every email must be
observed, coverage is low. Abstracting states with similar
textual content as being the same reduces the state space
[22], but discards most user actions (e.g., that a ’reply’ but-
ton transitions the state from previewing to replying) and
still requires all data to be seen: models are smaller, but
precision suffers and coverage does not improve.

We recast the problem as extracting a control-flow model
of the user interface, highlighting that we should abstract
away user and application data. Actions are often parame-
terized by data: our approach is to abstract them, such as
by attempting to equate a link to one email with a link to
another. 1 Our core analysis consumes snapshots of transi-
tions between DOM states and outputs 1) a graph describing
transitions between GUI states and 2) a classifier to label
an arbitrary page as a state in this graph. For example, a
meta-application can classify the state of a page and use the
model to predict where clicking on a widget will lead. We
quantitatively evaluate our model extractor (Section 5) on
large, popular web applications: it is precise, lightweight,
and quickly achieves high coverage.

We qualitatively evaluate the versatility and appropriate-
ness of our approach by exploiting it in otherwise challeng-
ing meta-applications. First, we describe our novel browser
extension(Section 2.1) that interprets natural-language com-
mands for arbitrary applications. Previous attempts inter-
pret sloppy[23] commands for directly visible screens like
click menu; click photo; ...: ours interprets the more
natural command upload private photo. Second, we ex-
tend our analysis to yield change information (Section 2.2)
because updates to a website often break any third-party ap-
plications that manipulates it. An application can use this in
a change-impact analysis, detecting which interactions with
the website must be repaired and, if so, how.

In summary, we contribute:

1. A control-flow analysis for web application GUIs.

2. Motivation for exposing and manipulating UI models.

3. A natural-language interface to web applications.

4. A change-impact analysis for GUI manipulations.

2. UI MODEL-DRIVEN APPLICATIONS
User interfaces are an exploitable abstraction layer. They
represent what a user may perform, eliding often unnec-
essary details like lower-level or unused program function-
ality. Even exposing as simple a representation of a user
interface as a finite state machine where actions are ab-
stract DOM tree configurations and edges are clickable DOM
nodes, as learned by our analysis, is already useful. A meta-
application writer, to be productive, any hook into such
a simple model of a website, only considering the exposed

1Abstracting away data does not mean we lose sight of it:
this helps isolate it, so downstream processes are better
equipped to analyze data.

website-specific language of user interactions. Decisions are
now based on high-level information about what sequences
of commands take the user interface to which states, while
low-level details about the underlying code that interface
commands invoke are filtered away.

Programming-by-Demonstration (PBD) Tools are in-
structed by a user to perform tasks that would other-
wise be performed manually. Screenscrapers[6] can be
shown how to extract data from websites, and mashup
generators can be shown how to manipulate them[9].
In an earlier version of this work, we considered how
to achieve PBD tools that 1) infer loops based off of a
user’s actions and 2) detect demonstrations that, when
synthesized, yield potentially underspecified program,
and query users about these relevant scenarios.

Mixed Initiative Interfaces augment direct user manip-
ulations with automated actions. For example, when
using a complex image editing program, a mixed ini-
tiative interface might suggest effects that others have
performed in analogous program states[5]. Extracting
the usage data for this is difficult, yet it can be phrased
as a simple probabilistic extension of finite state ma-
chines where edges have probability distributions.

Automated testing benefits as well: bug finders that ex-
plore models are driven by such tools[18, 20, 24].

Indexing applications for search engines is one of our
long-term motivations. Recent work examines ran-
domly changing parameters in URLs [12] or clicking
[22] to extract data from applications. However, just
as directed methods are useful in automated testing
[24], we believe an analogous notion can be applied to
indexing data in programs, and are pursuing this.

Analytics help gauge if and how features are used. Again,
our tool can be adapted to describing common flows at
a legible abstraction level by adding edge probabilities.

There are many other uses. Next, we attempt to inter-
pret natural language commands by a user and make meta-
applications more robust against changes to a website’s in-
terface. Meta-applications that manipulate UI models are
increasingly helping us achieve otherwise difficult programs.

2.1 A Natural-Language Program Interface
Suppose we visit the home page of the flickr.com appli-
cation and want to quickly upload a photo, but do not yet
want to make it public. No single action available on the
start page can perform this. Similar to how we use a search
engine, we’d like to simply issue the command ”upload pri-
vate photo.” We introduce our analysis by showing how we
use it in a Firefox extension that, without any customization
for Flickr, recognizes this command.

Our analysis constructs a control-flow model for the user in-
terface of Flickr in the form of a finite state machine (FSM).
Figure 1 shows part of the one generated for Flickr. Directed
edges represent legal user actions such as clicking on buttons
and following links. Only the actual labels of these elements

Figure 1: Snippet of the Flickr.com FSM

are presented here, to simplify the exposition. Nodes rep-
resent states of the application that share the same control
structure, namely the same set of outgoing actions.

We recast the problem in terms of directed graphs: given an
initial node s and a set of keywords Q = {qi|i = 1..n}, we
wish to find a path in this graph starting at s and ending
at some other node t, such that i) the labels of the edges on
this path match the maximum number of keywords and ii)
the path is the shortest possible. We do not require exact
word matches, opting instead for word senses, and in lieu of
a grammar model, accept commands in any order.

Our extension constructs the FSM and extracts the adja-
cency matrix. It then perform a transitive closure over the
matrix to compute reachability information and collect at
each step the unordered set of labels on each path. Let
labels(s1, s2)k denote the set of labels on all paths from s1
to s2 of length up to k. The function match(A,B) counts the
number of query keywords from set A that match keywords
from set B. In essence, our algorithm computes:

max mink match(labels(s, s′)k, Q)

For the Flickr example, we indeed find the shortest path
from state 3 to state 12 going through state 11, as it max-
imizes the number of matched keywords (3). Our model
extractor opens up a variety of new possibilities.

2.2 Interacting with Applications that Change
Programs written to manipulate user interfaces are sensitive
to changes to interfaces. In a survey of programming-by-
demonstration tools that operate over other websites (in-
cluding but not limited to [6, 15, 23, 9]), most archived
user-generated programs did not work. We assume some
worked at some point and updates to the PBD tools were
backwards-compatible. Thus, the chief cause of disruption is
likely external. Innocuous updates to web sites are frequent
and include structural interfaces changes[7] that cause PBD-
generated programs to break. We show that such promising
tools can be made autonomic by utilizing information of how
a user interface changes to repair themselves.

First, we adapted our model extractor into a change analysis,
revealing what abstract UI states are added and removed.
We examined the open source customer relationship man-

Figure 2: Fragment of a change analysis for upgrad-
ing SugarCRM from 5.0 to 5.1. Circles are states
and edges are actions.

agement tool SugarCRM, consisting of 443,001 lines of PHP
code, for examples of structural changes when updating one
major minor version (from 5.0.0h to 5.1.0b). We first ran-
domly clicked around four sub-components of SugarCRM
5.0, and then randomly used them again in 5.1, recording
448 and 219 non-spurious clicks, respectively. We ran our
model extractor on all of these, yielding the basic transition
structure partially shown in Figure 2. By coloring every ab-
stract state based on whether it was demonstrated in version
5.0, 5.1, or both, we estimate how the application changed.

In unsupervised deployments, a subtlety is of how to de-
termine which concrete recordings belong to which program
versions. In our case, we knew that URLs involving ver-
sion number ”5.0.0h” were from one epoch and ”5.1.0b” from
another. As will be clearer in the evaluation, there is an
expected error rate for predictions made by an extracted
model: an indicator for a new epoch is that a model is sud-
denly making worse predictions than usual. Domain knowl-
edge also helps, such as tracking when third-party programs
break. Techniques like the former are safer in that they
operate without new interactions with the application.

j 

k 

State in both versions

New version state

User demonstrated

Added ambiguity

Repair

1  1  3 2  2 

save

save next

skip ad

next

1 2 3 
next

save

next

next

save

skip ad

Updated Program

Impacted Macro
next

Figure 3: A photoviewing application that is up-
dated to show advertisements and an impacted
third-party program to download all photos.

We adapt our change analysis for websites into a change-

impact analysis for third-party programs. Figure 3 describes
part of a model photo viewing application with next and
save buttons. Consider a third-party program to follow
next buttons and save every photo, such as one authored
by an end-user with a PBD tool or a programmer writing
Python. If the website is updated to occasionally show an
intermediate advertising page with an explicit skip ad but-
ton, the third-party program will stop prematurely on that
state (Updated Program in Figure 3).

Our initial solution is to simply label the third-party pro-
gram states with respect to the website state they are act-
ing upon. This implicitly colors states as well. A program
is broken if it utilizes a black colored state. Program tran-
sitions to gray edges that, non-deterministically, may also
lead to white (new) states, may also break. Once these bad
programs are detected, a tool might query a user for more in-
formation or try to automatically reroute the program. For
example, in the case of ads, a user model would show that
the common course of action is to press ’skip ad’ and realign
with the original program (Impacted Macro in Figure 3).

Coloring is insufficient. It helps when abstract states are
added and removed. However, actions also change, such as
if save is renamed to download2. Our analysis is still useful:
the task is now akin to that of machine translation[4].

In summary, model extractors like ours are a viable route to
change-related challenges like autonomic application macros.

3. MINING INTERACTION MODELS

GUI model
Properties

Semantics
> Semantic Queries

Application Source

∧

Properties

Semantics
> Program Queries

∧.........

Figure 4: Two choices for extracting semantic infor-
mation from an application.

We want to export a high-level model of an application to
support semantic queries directly upon it. Standard pro-
gram analyses operate on a low-level view of the application,
closer to the program source than to the end-user’s concep-
tual model, as in Figure 4. They offer program querying
functionality, but have a hard time converting a low-level
query answer into a high-level one (e.g., in terms of a UI
model – the dotted arrow). Users typically do not care about
source code or the internal state of the application, as their
mental model is the navigation through the user interface.
Rich meta-applications, such as our natural language ex-
tension, require semantic queries over more abstract states.
We introduce a technique for extracting GUI models to en-
able such semantic queries. It is provably sound and can
be automated, drawing directly from the general abstract
interpretation framework for stacking abstractions.

3.1 Abstraction Stack for GUI Models
2We label actions with node paths: switching HTML tags
is tantamount to renaming in our models.

We start by representing the true user interface model of
the application as a transition system. A program state,
represented by a node in a graph, encapsulates the visual
representation and any associated data such as cookies or
persistent data. Transitions, corresponding to edges, are
defined by actions that affect the application state – syn-
chronous user interactions such as clicks, or GUI changes
triggered asynchronously by I/O or network activity, time-
outs, etc. For the synchronous case (the most common),
transitions are labeled by the visual element that triggered
the update – which button, link, etc.

We assume that action labels are informative enough to
guide the user through the interface, such as through a but-
ton label, link text, etc. We also assume that the current
state provides all the necessary information to the user and
thus determines all future interactions, hence our state ma-
chine representation. These assumptions rely on commonly
practiced UI design principles.

Concretely, let S be the set of interaction states of the appli-
cation, A be the set of all actions and ∆ a transition relation,
∆ ⊆ S×(A∪ε)×S. The ε action models asynchronous tran-
sitions. We do not perform a static analysis over the source
code (it is not tractable[3]) nor instrument it (it may be hid-
den by a server), so we do not know the set of states S a
priori nor the set of actions A. Just taking observed and
recorded triples (s, a, s′) and defining them as the approxi-
mation of the set ∆ is insufficient: we only observe a tiny
portion of the true set. Instead, we stack three abstractions
that ultimately yield the computable finite state machine

approximation (S bA, bA,∆ bA).

S
βS→DOM−−−−−−−→ SDOM

βDOM→A−−−−−−−→ SA
β
A→ bA−−−−→ S bA (1)

Loosely, this corresponds to abstracting to the visual DOM
state(Section 3.3), and then (Section 3.4) the item a user
interacted with and detecting data within the manipulated
item. Every inferred triple (s bA,ba, s′bA) corresponds to poten-

tially many (s, a, s′) triples.

3.2 Algorithm Intuition and Composing Ab-
stractions

Every abstraction is driven by two heuristics: a function β
that abstracts states, and an equivalence class ∼ over ac-
tions, with a corresponding projection function π mapping
actions to their equivalence class. We do not know the bins
defined by ∼ a priori, so we learn it by grouping similar ob-
served actions using heuristics. For the first abstraction, we
define β, but in the subsequent abstractions, we define β(s)
as the set of abstract actions enabled in s. On every pass
we can use these to compute a more abstract transition rela-
tion ∆. This over-approximates the previous, more concrete
transition relation: for every transition (s1, a, s2) in the old
state machine, we add a transition (β(s1), π(a), β(s2)) in
the new state machine. This preserves all real transitions
and possibly introduces spurious ones when the heuristics
are too loose. Finally, instead of making multiple passes,
we can compose the action abstractions into one action ab-
stractor π bA and, more efficiently, make one large pass. We
now proceed to describe each step in detail.

3.3 DOM Actions

Our first abstraction function βS→DOM maps concrete vi-
sual states into DOM trees (SDOM). This discards internal
state such as cookies and client-side and server-side per-
sistent state. The projection function πDOM plays a sim-
ilar role for actions. Synchronous user actions are declared
equivalent if they occurred on the same target element in the
DOM tree of the page (the user clicked the same button, link,
etc.); the projection function maps concrete actions to exact
paths in the DOM tree. This discards side-effects, such as
performing a POST request. The state machine at this step
has transitions ∆DOM , safely mirroring the transitions from
∆.

βS→DOM (s) = DOM(s), ∀s ∈ S (2)

πDOM (a) = DOM PATH(a), ∀a ∈ A (3)

The semantics we described so far is uncomputable when-
ever the state machine has an infinite number of states. The
reason is that we retain too much information in the ab-
straction – the whole DOM tree. Much of this content is
data-dependent and varies from user to user. The intuition
is that we want to define a page in terms of what the user
can do with it, namely the set of enabled actions. We say a
state s has action a enabled if there exists (s, a, s′) ∈ ∆DOM

for some s′ ∈ SDOM . This means the element (button, link,
etc.) represented by a is present in the DOM tree of the
page.

Let en(s) denote the set of enabled actions for state s, en :
SDOM → P(A). Our next abstraction βDOM→A groups
states that have the same set of enabled actions and builds
the state machine from SA and ∆A accordingly:

βDOM→A(s1) = βDOM→A(s2) ⇐⇒ en(s1) = en(s2) (4)

3.4 Program vs. Data Actions
The previous abstraction step might still yield an infinite
state machine. The set A of actions, while appearing finite
for a snapshot of the application at a particular moment in
time, for a particular user, is not. Many actions are labeled
with data-dependent values: for example, in a web-mail ap-
plication some links are labeled with the subjects of the
emails. The insight is that each application has a control-
flow skeleton that is independent of data. We call actions in
A which do not depend on data program actions, and all oth-
ers data actions. From a developer’s point of view, program
actions have labels that don’t depend on inputs and are fixed
in number, while data actions have dynamically-generated
labels and their number can vary.

The crucial step is to define an equivalence relation ∼ on ac-

tions and construct the finite set bA based on the equivalence
classes induced. Two data actions a1 and a2 constructed in
the same way and playing the same role in the UI will be
equivalent a1 ∼ a2, so they will have a unique representativeba1 = ba2 ∈ bA. Since the number of such representatives is

finite, the set bA is finite.

The final abstraction step defines βA→ bA:

∼ ⊆ A×A (5)ba = {a′ ∈ A | a ∼ a′} (6)

π bA(a) = ba (7)cen : SA → P(bA) (8)cen(s) =def {ba | a ∈ en(s)} (9)

βA→ bA(s1) = βA→ bA(s2) ⇐⇒ cen(s1) = cen(s2) (10)

Note that ε-transitions are preserved. The resulting finite
state machine combines the three layers of abstraction and
over-approximates safely the original state machine. (Proofs
for safety are easily constructed: from the abstraction β one
can build the Galois connection between domains S and S bA,
and then prove safe simulation).

3.5 The Algorithm

1 2

3 4
(b) Trace of three user actions

1, 3 2, 4
(c) State set S bA

Figure 5: Running example for Algorithm 1

1 3

Figure 6: State abstraction without data actions

The input to our core analysis is a set of observed pro-
gram transitions {(Pagei, ai, Pagei+1)}. We gather ours by
breaking apart trace trees we observed with a Firefox ex-
tension (Section 4). The algorithm iteratively stitches these
back together into a finite state machine representation.

We now illustrate how the model extraction algorithm works
with with Figure 5. To simplify the notation, β bA denotes the
composition βA→ bA(βDOM→A(βS→DOM (·))), and π bA : A →bA denotes the projection function based on the ∼ equiva-
lence relation.

Let’s consider a hypothetical web-mail application and the
recordings of three user interactions as depicted in Figure

Algorithm 1 Model Extraction From Traces

Input: Set of recordings {(Pagei, ai, Pagei+1)|i = 1..n}
Output: FSM (S bA,∆ bA)
1: A← {ai|i = 1..n}
2: S ← {Pagei|i = 1..n+ 1}
3: bA← {π bA(a)|a ∈ A}
4: for all states s ∈ S, s = Pagei do

5: for all actions ba ∈ bA do
6: if action ba matches s then
7: en(s)← en(s) ∪ ba
8: end if
9: end for

10: end for
11: bS ← {β bA(s)|s ∈ S})
12: ∆ bA ← ∅
13: for all recordings (Pagei, ai, Pagei+1) do
14: ∆ bA ← ∆ bA ∪ (β bA(Pagei), π bA(ai), β bA(Pagei+1))
15: end for

5(b): the user clicks to view the first email message, returns
to the Inbox and then clicks again to view a new email mes-
sage (that wasn’t previously available). Lines 1–2 in the
algorithm identify the set of actions A and the set of states
S: in our case, the three actions labelled Re: Hello, Inbox
and Your order, and the four states shown in the figure.

Line 3 builds the set bA of data actions, using the projection
function π bA. In our example, Your order and Re: Hello

are instances of the same data action, namely viewing the
content of a message. They will be merged together by the

projection function, so bA will contain the program action
labelled Inbox and the data action for viewing a message
(labelled generically ”***”). This data action matches any
message, anywhere in the list. Each action is represented by
its path in the DOM tree.

Lines 4–10 identify the set of enabled actions for each state,
and line 11 builds the abstraction β bA, grouping together all
states that have the same set of enabled actions. In our
example, the program action Inbox matches all four states,
while the data action matches only the first and third states.
We therefore obtain two abstract states, as sketched in Fig-
ure 5(c). This abstraction ignores any textual differences be-
tween states, such as the ”Last Refresh” line or the message
body, and views a page as just a DOM skeleton containing
the paths of the enabled actions.

Lines 12–15 build the transition relation for the finite state
machine, by lifting each transition observed in the trace
through the abstraction functions. In the example, the first
user click yields a transition from the first abstract state to
the second, for the data action labelled ”***” matching any
message subject in the list. The second click yields a tran-
sition back to the first state, for the program action Inbox.
The third click yields the same transition as the first.

Finally, to give an intuition for the importance of the data
action abstraction, let’s consider what would happen with-
out it. Our three user actions would be treated as program
actions. As such, Re: Hello would only match the first
state (since in the third state the message appears in a dif-

ferent position, with a different path in the DOM tree), and
Your order would only match the third state. The single
abstract state 1,3 from Figure 5(c) would be split in the two
states in Figure 6. Furthermore, note that any state with a
different list of email messages would not be abstracted into
either one of these states; as the user receives new messages
and opens them, we record program actions with different
labels, causing a state explosion in the algorithm. Only the
data action abstraction can merge all of them.

4. RECORDING TRACES
We created a browser extension that records a user’s tran-
sitions between DOM states and feeds this training corpus
into our analysis to yield a UI model. Other aggregation
mechanisms are possible, such as monitoring unit testing
frameworks or gathering traces from different users; our next
project is to adapt directed automated random testing[24].
Our current implementation, while simple, has some sub-
tleties. First, we must be careful in how we represent the
user interface’s DOM state. Second, recordings of web in-
teractions[16] such as using a back button should not be
modeled as typical, consecutive actions. Finally, we must
model asynchronous function calls.

4.1 Recording a Window
Recording the state of an interface is subtle. We are inter-
ested in encoding the visual state of a window and detecting
when the user interacts with it. In a survey of web PBD
tools, we found most struggled to consistently record such
data. The DOM tree conveniently encodes data and actions
that can be acted upon, which we record, but some nodes
may not be visible to the user due to sophisticated styling.
We try to detect and prune such nodes; APIs do not sup-
port this so we still miss some cases. Furthermore, pages
may be nested in a window using frame and iframe tags,
so we stitch them together. Finally, our click handlers must
not interfere with that of the application; we achieve this
for programs that are not unusually sensitive to the time to
handle a click.

4.2 Web Interaction Traces as Trees
Web applications feature user interactions so subtle that
they have even prompted the invention of many new types
of continuations [19] to properly characterize them. Con-
sider the message sequence diagram in 7(a). A user opens a
list of documents, adds tiramisu to a ’cooking night signup’
sheet, inspects a team roster in another tab, and then de-
cides that more tiramisu is necessary. User interactions with
the browser are denoted with [brackets], and the rest are ex-
plicit user interactions with the actual application. To emit
the trace seen in 7(b), we see several interactions that are
not found in typical desktop applications:

• Actions in one tab may effect another, such as opening
the signup sheet document in a new window. Opening
a new tab is typically more like a continuation of the
full application. Thus, we model an action taking ef-
fect in a new tab as a fork in a trace, creating a trace
tree, unlike others that use a string[25].

• Applications typically support browser interactions like
refreshing a page or using the Back or Forward but-
tons. These interactions imply that there is an edge at

Tab 3 Tab 1 Tab 2

[url doc.com]

click
‘cooking night signup’

write ‘tiramisu’
click ‘team roster’

[close tab]

[refresh]

write ‘2x tiramisu’
time

(a) Sequence diagram

Tab 3 Tab 1 Tab 2

[url doc.com]

click ‘cooking night signup’ click ‘cooking night signup’

write ‘tiramisu’ click ‘team roster’
click ‘team roster’

write ‘2x tiramisu’

(b) Forest of trace trees

Figure 7: Example of user interactions with the browser and the associated trace trees.

every state going back to a temporally preceding state
in which a URL changed [16], so we must record all
URL changes to allow implicit encoding of back, for-
ward, and refresh buttons. In practice, there are also
many spurious URL redirections, so we batch them
together temporally.

• Similarly, users may manually enter in a new URL.
This essentially starts a new application, even if po-
tentially at an intermediate state. We start a new
trace when this occurs.

4.3 Modeling Asynchronous Events
A final subtlety on modeling web interactions that we in-
vestigated is how to handle AJAX events. State-changing
asynchronous events mostly occur during animations spread
over an event loop or when communicating with a server.
The former rarely impacts our notion of enabled and dis-
abled actions, just changing visual formatting, but the latter
requires more reasoning.

Consider a mail application in which a user may hit the
Next button to view the next message and some messages
are cached on the client. If the user clicks Next and the
message is cached locally, the UI will synchronously update.
However, if the message is not in the cache, an asynchronous
request will be sent to the server and the user can continue
interacting with the application. If the email is returned be-
fore the user interacts with the application again, it is still
like a synchronous event. However, the server response can
be at any time, and thus during any subsequent UI state
for the same page session. An FSM model must conser-
vatively include an ε-transition on all future states where
the subframe that made the AJAX request maintains the
same URL. Interestingly, after months recording, we never
encountered a spurious user interaction between a server re-
quest and its response; AJAX usage is synchronous with
respect to the UI model.

5. EVALUATION
Section 2 qualitatively shows our analysis is useful; we now
quantitatively evaluate performance and effectiveness.

5.1 Performance
We separately examine our trace aggregation mechanism
and the analysis itself. Our library is a standard Firefox
3.0 extension: it uses JavaScript (without JavaScript trac-
ing optimizations) and SQLite 3.1, and we ran it on a 2.4Ghz
MacbookPro laptop with 2GB of RAM and OS X 10.5.5.

5.1.1 Aggregation Complexity
Recording time is on the order of 10ms. It is dominated by
the tasks of accessing a database and serializing data. These
are optimizable and half the work can be taken off of a user’s
critical path.

Over a period of 5 months, space usage, including table in-
dices that cause duplication of data, amounted to 1.9MB of
compressed recordings per day. Over 20% of these record-
ings are exact duplicates, most recordings include data we
do not utilize, few recordings are of large websites, and our
models label many as duplicate abstract states (e.g., repeat-
edly viewing a news page): unoptimized, space is linear in
the number of page recordings with a high constant. While
not a concern for our prototype, it can be made a function
of the model size (< 200 states in our tests) by removing
duplicates with respect to it. Alternative aggregation mech-
anisms, like randomly sampling different users or methodi-
cally exploring an application, are further common ways to
assuage recording concerns. Recording is cheap.

5.1.2 Analysis Complexity
Our analysis is dominated by two tasks: marshalling data
from our database and determining the enabled set of ac-
tions en on a page. Despite the high interpretation over-
head of JavaScript, the rest of the steps were on the order of
1-100ms. Retrieving recordings can be largely circumvented
by better storage practices and avoided in online usage (e.g.,
directed spidering[24]). Labeling actions in a recording is
akin to matching CSS selectors to nodes in an HTML page.
Matching one action against a page is fast (0.01-1ms), but

matching against all actions (| bA|) is slow because our ab-
straction still misses some common idioms: to be discussed
next, | bA| is 0.2n, where n is the amount of recordings to train

over. Detecting badly abstracted actions, even without bet-
ter abstracting them, would eliminate the dependency on n.
Finally, using native code to match selectors would be faster,
and in concurrent work, we are achieving 10-40x speedups
over Firefox’s optimized CSS selector engine[14].

In expected usage scenarios, time spent interacting with an
application should dominate recording and analysis time.

5.2 Effectiveness
We analyze our blackbox analysis with the typical metrics of
precision and recall. Our task is to learn abstractions over
states and actions and a model of transtions over them:

β bA : S → S bA (11)

π bA : A→ A bA (12)

∆ bA : S bA ×A bA × S bA (13)

In particular, we want the following relationship to hold for
most program transitions (s, a, s′):

(β bA(s), π bA(a), β bA(s)) ∈ ∆ bA ⇐⇒ (s, a, s′) ∈ ∆ (14)

In the right direction, if our model predicts the transition,
we want the probability that this guess is correct to be high
(precision). Conversely, if it is a valid transition, the prob-
ability that the model predicts it should be high (recall).

Table 1 describes these values as well as the sizes of the
learned sets of abstract states and actions for popular pub-
licly accessible websites. A trial of a given training set size
uses an untrained test set of the same size from a tempo-
rally similarly recording span, and for true negatives and
false positives, recordings from randomly chosen websites.

We have two goals. First, to achieve exact precision, so it is
safe to perform predicted sequence of actions, and high re-
call, so predictions are made. A large set of abstract actions
is useful, which led to the “rich” heuristics: our second goal
is to have as high a precision and recall rate for it as with
the loose abstraction, but to infer more abstract actions.

5.2.1 Precision
Precision measures, if the model states a transition is possi-
ble, how often it really is. For example, if the model predicts
clicking a button will show a list of emails, high precision
implies clicking the button will indeed show emails. We first
define true and false positive and negatives:

TP = {(s, a, s′) ∈ ∆ | (β bA(s), π bA(a), β bA(s′)) ∈ ∆ bA}
FP = {(s, a, s′) /∈ ∆ | (β bA(s), π bA(a), β bA(s′)) ∈ ∆ bA}
TN = {(s, a, s′) /∈ ∆ | ¬((β bA(s), π bA(a), β bA(s′)) /∈ ∆ bA)}
FN = {(s, a, s′) ∈ ∆ | ¬((β bA(s), π bA(a), β bA(s′)) ∈ ∆ bA)}

Precision is simply |TP |/(|TP | + |FP |). We cannot iterate
over all program transitions ∆ when calculating these, so we
instead approximate it with observed transitions ∆DOMρ ⊆
∆DOM and use recordings from other sites for the set com-
plement. Furthermore, ∆DOMρ contains recordings we did
not train on: our near-perfect precision would otherwise in-
flate all results by 10-25%.

Program actions are too exact. Precisions for them were
often either 0% and 100% because few guesses were made.

We slightly redefine precision in Table 1 as |TP |/(1+ |TP |+
|FP |) to help illustrate this by penalizing rarely acting. Fi-
nally, for data actions, even when our loose abstraction was
refined with more sophisticated heuristics, we maintain our
extreme precision. We achieve our precision goals: transi-
tion predictions by our analysis are almost aways correct.

5.2.2 Recall
Recall measures, for a random valid transition, whether the
model predicts it. For example, if clicking a button shows
a list of emails, high recall implies the model predicts this.
Formally, recall is defined as |TP |/(|TP | + |FN |). An ab-
straction’s ability to correctly predict possible transitions
that were not demonstrated raises |TP |. Its ability to weed
out impossible transitions decreases |FN |: coupled with
model size, this suggests model predictions are non-trivial.

Just using program actions[20, 22] leads to low recall. In
most cases (Table 1), we saw at most 5% recall: many ap-
plications, like calendars and email programs, are highly dy-
namic with respect to data. Excessive retraining over time
(instead of sticking with a learned model) might alleviate
this in part, but this is costly. Applications need not be
data-heavy, but every one we tested was.

Our data action abstractions fared much better. As the
size of a training set increases (Figure 8(a)), the number of
states first quickly rises, but then only increases at a slow,
constant rate. An intuition is that we cover much of the
program in the rising phase, but, once the program is largely
covered, there are still some actions that our abstractions do
not recognize: the gradual incline is the proportion of how
often these are encountered3. For Google Calendars, once
the recall rate stabilizes (Figure 8(b)), we do not account for
application idioms that occur 20% of the time, as was also
the case for GMail.

We thus achieve our goals of exact precision and high enough
recall to be useful and to show the viability of our approach.

6. RELATED WORK
We organize our discussion first by general approaches and
then by particular projects.

The dynamic analysis community has long considered vari-
ants of our problem. Learning automata from examples is
an old problem [10], but doing so for complex software has
only recently been gaining traction. For example, exam-
ining execution traces [1] to infer temporal specifications is
successful even on operating system kernels [8]. But such ap-
proaches struggle to find exportable abstractions appropri-
ate for downstream consumption of their analysis [2]: traces
are instead used to automatically find low-level bugs. We
find a high-level abstraction and are able to incorporate ab-
stract states alongside abstract actions into our analysis;
these approaches generally only use one. Finally, such ap-
proaches have only been discussed with respect to probabil-
ity; while doing so would be simple for us, we more strongly
motivate our analysis by making the connection to abstract
interpretation when picking abstractions.

3E.g., over time, rare unseen features become rarer

Website Training set
Program Actions (exact) Data Actions (rich) Data Actions (loose)

precision recall states actions p r s a p r s a

Google Documents
492 92% 3% 303 349 99% 40% 43 146 99% 49% 47 71
656 96% 5% 392 470 100% 48% 62 206 100% 54% 56 83

Facebook
251 88% 4% 172 190 92% 7% 100 138 97% 22% 87 83
380 83% 2% 268 267 96% 10% 163 190 97% 18% 162 109

Google Calendars

47 95% 61% 8 17 94% 47% 9 22 95% 64% 5 10
264 98% 57% 62 70 100% 68% 28 53 100% 78% 28 37
358 99% 42% 111 89 100% 70% 30 77 100% 78% 34 38

Google Search 478 88% 2% 380 388 99% 58% 35 66 100% 74% 21 27

Table 1: Quantitative results.

1 

10 

100 

1000 

0  100  200  300  400  500  600 

St
at
es
 in
 m

od
el
 (l
og
 s
ca
le
) 

Recordings in training set  

Model Size for Google Calendars 

Data ac-on abstrac-ons (loose)  Data ac-on abstrac-ons (rich) 

Program ac-on abstrac-on (exact)  worst case 

(a) State explosion only with program actions

0 

20 

40 

60 

80 

100 

0  100  200  300  400  500  600  700 

Re
ca
ll 
fo
r 
un

tr
ai
ne

d 
se
t 
(%

) 

Recordings in training set 

Recall for Google Calendars 

Data ac/on abstrac/ons (loose)  Data ac/on abstrac/ons (rich) 

Program ac/on abstrac/on (exact) 

(b) Future work: 20% of user clicks are not modeled

Figure 8: Inferring a model for Google Calendar

The HCI community has long been interested in programming-
by-demonstration, which again involves learning a model
based on observations. One typical key difference is what
we focus on extracting: we are interested in extracting the
entire program model, not just the popular subset that forms
a PBD specification, the latter of which we view as an in-
teresting subproblem. Many tools even assume application
developers expose such information, despite claims of gener-
icity or of supporting the web. We isolated a useful ab-
straction level and showed how to automatically abstract
information relevant to it: while original tools[5] that did
attempt to extract models use abstractions similar to pro-
gram actions, none suggest further ones like data actions.
Finally, to respect web interactions, we cast traces as trees,
not strings[15].

The model checking field is focused on defining program
models and verifying their conformance to generic properties
(the absence of entire classes of bugs such as deadlocks, race
conditions, memory violation errors, etc) or user-defined
properties. Abstraction is a well established technique for
reducing the infinite state space that the model checker has
to explore, and the latest techniques [13] are able to infer
the necessary abstraction from the properties that have to be
checked. We could also adjust our abstraction if downstream
applications had a formal way of specifying their queries.

Crawljax [22] is a dynamic analysis tool for inferring state
machines of rich, AJAX applications. It automatically ex-
plores the state space randomly clicking on pages and ab-
stracts pages based off of the tree-edit distance between
DOM trees. This abstraction is infinite in the data: it in-

herently fails on applications because it performs a bounded
exploration of an infinite space. Furthermore, it hides small
program transitions like advancing through an interactive
form due to its similarity metric: this is unacceptable for
tools like our natural-language command-line.

State-based testing of AJAX applications has been concur-
rently proposed in [18]. As with Crawljax, their abstractions
do not yield rich models. Three differences in our approach
are that we abstract over both states and actions, validate
our abstractions over multiple popular state-of-the-art web
applications, and extract models grounded in end-user se-
mantics that we have shown to be useful. The first and last
differences are fundamental: this tool works at an inappro-
priate abstraction level for our purposes, exporting results
that are difficult to use and do not exploit important domain
notions.

State-based GUI testing of desktop applications has been
similarly proposed[20, 18]. When recast in our terms, it only
uses program action abstractions, suffering as described in
our evaluation. Repairing GUI tests (e.g., interaction se-
quences generated by a record-and-replay meta-application)
when GUIs change is a large concern: state-based approaches
have been used to detect tests broken for a particular state
[11]. These lead to randomly evolving new tests to “repair”
the number of tests run in a testsuite[21]. Applied to test-
ing, our approach could repair individual tests during the
common case of structural GUI changes; we are the first to
model how the GUI structure transitions.

7. FUTURE WORK

First, there is room for further abstractions, such as for
records[17]. Next, we want to detect hierarchical models.
Also, while we can detect data, we also want to label data
dependencies. Finally, to drive our work, we want to inves-
tigate further testing, HCI, and search-related applications.

8. CONCLUSION
In summary, we have shown how meta-applications may ex-
ploit existing user-interface through model extractors. This
includes discussion of particular application domains, a pro-
totype for a new one (getting closer to achieving natural-
language interfaces), and, to make such programs robust,
a precise change analysis for websites and derived change-
impact analyses to help such programs repair themselves.

Our biggest technical contribution is to show that by phras-
ing the core model extraction problem as a control-flow anal-
ysis over user interfaces, we see that we should abstract
over data, with user-manipulated objects being a key tar-
get. When picking abstractions, we show how to exploit the
assumption that the frontend is an abstraction of an under-
lying program (a layer of abstract interpretation). Thus,
while we still miss some idioms, our basic approach quickly
achieves high recall on non-trivial models with 99-100% pre-
cision: we have contributed a fundamental tool to power new
meta-applications and make them more robust.

9. ACKNOWLEDGEMENTS
We thank Koushik Sen for motivation and Fabian Wauthier
and Lester Mackey for discussions on machine learning. Ras
Bodik, Rob Ennals, Beth Trushkowsky, Benjamin Hindman
and Chris Jones provided useful critiques.

10. REFERENCES
[1] G. Ammons, R. Bod́ık, and J. R. Larus. Mining

specifications. In POPL ’02, pages 4–16, New York,
NY, USA, 2002. ACM.

[2] G. Ammons, D. Mandelin, R. Bod́ık, and J. R. Larus.
Debugging temporal specifications with concept
analysis. In PLDI ’03, pages 182–195, New York, NY,
USA, 2003. ACM.

[3] T. J. Arjun Guha, Shriram Krishnamurthi. Using
static analysis for ajax intrusion detection, 2009. to
appear.

[4] P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D.
Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and
P. S. Roossin. A statistical approach to machine
translation. Comput. Linguist., 16(2):79–85, 1990.

[5] A. Cypher. Eager: programming repetitive tasks by
demonstration. Watch what I do: programming by
demonstration, pages 205–217, 1993.

[6] dapper. http://www.dappit.com.

[7] M. Dontcheva. Changes in webpage structure over
time. Technical Report TR2007-04-02, UW CSE,
April 2007.

[8] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS
Oper. Syst. Rev., 35(5):57–72, 2001.

[9] R. J. Ennals and M. N. Garofalakis. Mashmaker:
mashups for the masses. In SIGMOD ’07, pages
1116–1118, New York, NY, USA, 2007. ACM.

[10] J. Feldman and A. Biermann. On the synthesis of
finite-state machines from samples of their behavior.
In IEEE Transactions on Computers, pages 592–596.
IEEE Computer Society, 1972.

[11] C. Fu, M. Grechanik, and Q. Xie. Inferring types of
references to gui objects in test scripts. 2nd
International Conference on Software Testing. to
appear.

[12] A. Halevy.
http://googlewebmastercentral.blogspot.com/2008/04/crawling-
through-html-forms.html.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In POPL ’02, pages 58–70,
New York, NY, USA, 2002. ACM.

[14] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and
R. Bodik. Parallelizing the web browser, 2009. to
appear.

[15] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating & sharing how-to knowledge
in the enterprise. In CHI ’08, pages 1719–1728, New
York, NY, USA, 2008. ACM.

[16] D. R. Licata and S. Krishnamurthi. Verifying
interactive web programs. In ASE ’04, pages 164–173,
Washington, DC, USA, 2004. IEEE Computer Society.

[17] B. Liu, R. Grossman, and Y. Zhai. Mining data
records in web pages. In KDD ’03, pages 601–606,
New York, NY, USA, 2003. ACM.

[18] A. Marchetto, P. Tonella, and F. Ricca. State-based
testing of ajax web applications. Software Testing,
Verification, and Validation, 2008 1st International
Conference on, pages 121–130, April 2008.

[19] J. McCarthy and S. Krishnamurthi. Interaction-safe
state for the web. In Scheme and Functional
Programming, 2006, September 2006.

[20] A. M. Memon. An event-flow model of gui-based
applications for testing. Software Testing, Verification
and Reliability, 17(3):137–157, 2007.

[21] A. M. Memon. Automatically repairing event
sequence-based gui test suites for regression testing.
ACM Trans. Softw. Eng. Methodol., 18(2):1–36, 2008.

[22] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling
ajax by inferring user interface state changes. Web
Engineering, International Conference on, 0:122–134,
2008.

[23] R. C. Miller, V. H. Chou, M. Bernstein, G. Little,
M. V. Kleek, D. Karger, and mc schraefel. Inky: a
sloppy command line for the web with rich visual
feedback. In UIST ’08, pages 131–140, New York, NY,
USA, 2008. ACM.

[24] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for c. In ESEC/FSE-13, pages
263–272, New York, NY, USA, 2005. ACM.

[25] A. Sugiura and Y. Koseki. Simplifying macro
definition in programming by demonstration. In UIST
’96, pages 173–182, New York, NY, USA, 1996. ACM.

