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Abstract

We argue that the transition from laptops to handheld
computers will happen only if we rethink the design of
web browsers. Web browsers are an indispensable part
of the end-user software stack but they are too ineffi-
cient for handhelds. While the laptop reused the soft-
ware stack of its desktop ancestor, solid-state device
trends suggest that today’s browser designs will not be-
come sufficiently (1) responsive and (2) energy-efficient.
We argue that browser improvements must go beyond
JavaScript JIT compilation and discuss how parallelism
may help achieve these two goals. Motivated by a future
browser-based application, we describe the preliminary
design of our parallel browser, its work-efficient parallel
algorithms, and an actor-based scripting language.

1 Browsers on Handheld Computers
Bell’s Law of Computer Classes predicts that handheld
computers will soon replace and exceed laptops. Indeed,
internet-enabled phones have already eclipsed laptops in
number, and may soon do so in input-output capability
as well. The first phone with a pico-projector (Epoq)
launched in 2008; wearable and foldable displays are
in prototyping phases. Touch screens keyboards and
speech recognition have become widely adopted. Con-
tinuing Bell’s prediction, phone sensors may enable ap-
plications not feasible on laptops.

Further evolution of handheld devices is limited
mainly by their computing power. Constrained by the
battery and heat dissipation, the mobile CPU noticeably
impacts the web browser in particular: even with a fast
wi-fi connection, the iPhone may take 20 seconds to load
the Slashdot home page. Until mobile browsers become
dramatically more responsive, they will continue to be
used only when a laptop browser is not available. With-
out a fast browser, handhelds may not be able to support
compelling web applications, such as Google Docs, that
are sprouting in laptop browsers.

One may expect that mobile browsers are network-
bound, but this is not the case. On a 2Mbps network
connection, soon expected on internet phones, the CPU
bottleneck becomes visible: On a ThinkPad X61 lap-
top, halving the CPU frequency doubles the Firefox page
load times for cached pages; with a cold cache, the

load time is still slowed down by 50%. On an equiva-
lent network connection, the iPhone browser is 5 to 10-
times slower than Firefox on a fast laptop. The browser
is CPU-bound because it is a compiler (for HTML), a
page layout engine (for CSS), and an interpreter (for
JavaScript); all three tasks are on a user’s critical path.

The successively smaller form factors of previous
computer generations (workstations, desktops, and then
laptops) were enabled by exponential improvements in
the performance of single-thread execution. Future
CMOS generations are expected to increase the clock
frequency only marginally, and handheld application de-
velopers have already adapted to the new reality: rather
than developing their applications in the browser, as is
the case on the laptop, they rely on native frameworks
such as the iPhone SDK (Objective C), Android (Java),
or Symbian (C++). These frameworks offer higher per-
formance but do so at the cost of portability and pro-
grammer productivity.

2 An Efficient Web Browser
We want to redesign browsers in order to improve their
(1) responsiveness and (2) energy efficiency. While our
primary motivation is the handheld browser, most im-
provements will benefit laptop browsers equally. There
are several ways to achieve the two goals:

• Offloading the computation. Used in the Deepfish
and Skyfire mobile browsers, a server-side proxy
browser renders a page and sends compressed im-
ages to a handheld. Offloading bulk computations,
such as speech recognition, seems attractive, but
adding server latencies exceeds the 40ms threshold
for visual perception, making proxy architectures
insufficient for interactive GUIs. Disconnected op-
eration is inherently impossible.

• Removing the abstraction tax. Browser program-
mers pay for their increased productivity with an
abstraction tax—the overheads of the page layout
engine, the JavaScript interpreter, parsers for ap-
plications deployed in plain text, and other com-
ponents. We measured this tax to be two orders of
magnitude: a small Google Map JavaScript appli-
cation runs about 70-times slower than the equiv-
alent written using C and pixel frame buffers [3].
Removing the abstraction tax is attractive because



it improves both responsiveness (the program runs
faster) and energy efficiency (the program performs
less work). JavaScript overheads can be reduced
with JIT compilation, typically 5 to 10-times, but
browsers often spend only 15% of time in the inter-
preter. Abstraction reduction remains attractive but
we leave it out of this paper.

• Parallelizing the browser. Future CMOS genera-
tions will not allow significantly faster clock rates,
but they will be about 25% more energy efficient
per generation. The savings translate into addi-
tional cores, already observed in handhelds. Paral-
lelizing the browser improves responsiveness (goal
1) and to some extent also energy efficiency (goal
2): vector instructions improve energy efficiency
per operation, and although parallelization does not
decrease the amount of work, gains in program ac-
celeration may allow us to slow down the clock,
further improving the energy efficiency.

The rest of this paper discusses how one may go about
parallelizing the web browser.

3 What Kind of Parallelism?
The performance of the browser is ultimately limited by
energy constraints and these constraints dictate optimal
parallelization strategies. Ideally, we want to minimize
energy consumption while being sufficiently responsive.
This goal motivates the following questions:
1. Amount of parallelism: Do we decompose the
browser into 10 or 1000 parallel computations? The
answer depends primarily on the parallelism available in
handheld processors. In five years, 1W processors are
expected to have about four cores. With two threads per
core and 8-wide SIMD instructions, devices may thus
support about 64-way parallelism.

The second consideration comes from voltage scal-
ing. The energy efficiency of CMOS transistors in-
creases when the frequency and supply voltage are de-
creased; parallelism accelerates the program to make up
for the lower frequency. How much more parallelism
can we get? There is a limit to CMOS scaling benefits:
reducing clock frequency beyond roughly 3-times from
the peak frequency no longer improves efficiency lin-
early [6]. In the 65nm Intel Tera-scale processor, reduc-
ing the frequency from 4Ghz to 1GHz reduces the en-
ergy per operation 4-times, while for the ARM9, reduc-
ing supply voltage to near-threshold levels and running
on 16 cores, rather on one, reduces energy consumption
by 5-times [15]. It might be possible to design mobile
processors that operate at the peak frequency allowed
by the CMOS technology in short bursts (for example,
10ms needed to layout a web page), scaling down the
frequency for the remainder of the execution; the scal-
ing may allow them to exploit additional parallelism.

What are the implications of these trends on browser
parallelization? Consider the goal of sustained 50-way
parallelization execution. A pertinent question is how
much of the browser we can afford not to parallelize.
Assume that the processor can execute 250 parallel op-
erations. Amdahl’s Law shows that to to sustain 50-way
parallelism, only 4% of the browser execution can re-
main sequential, with the rest running at 250-way paral-
lelism. Obtaining this level of parallelism is challenging
because, with the exception of media decoding, browser
algorithms have been optimized for single-threaded ex-
ecution. This paper suggests that it may be possible to
uncover 250-way parallelism in the browser.
2. Type of parallelism: Should we exploit task paral-
lelism, data parallelism, or both? Data parallel architec-
tures such as SIMD are efficient because their instruc-
tion delivery, which consumes about 50% of energy on
superscalar processors, is amortized among the parallel
operations. A vector accelerator has been shown to in-
crease energy efficiency 10-times [9]. In this paper, we
show that at least a part of the browser can be imple-
mented in data parallel fashion.
3. Algorithms: Which parallel algorithms improve en-
ergy efficiency? Parallel algorithms that accelerate pro-
grams do not necessarily improve energy efficiency.
The handheld calls for parallel algorithms that are work
efficient—i.e., they do not perform more total work than
a sequential algorithm. An example of a work-inefficient
algorithm is speculative parallelization that misspecu-
lates too often. Work efficiency is a demanding re-
quirement: for some “inherently sequential” problems,
such as finite-state machines, only work-inefficient al-
gorithms are known [5]. We show that careful specula-
tion allows work-efficient parallelization of finite state
machines in the lexical analysis.

4 The Browser Anatomy
Original web browsers were designed to render hyper-
linked documents. Later, JavaScript programs, embed-
ded in the document, provided simple animated menus
by dynamically modifying the document. Today, AJAX
applications rival their desktop counterparts.

The typical browser architecture is shown in Figure 1.
Loading an HTML page sets off a cascade of events:
The page is scanned, parsed, and compiled into a doc-
ument object model (DOM), an abstract syntax tree of
the document. Content referenced by URLs is fetched
and inlined into the DOM. As the content necessary to
display the page becomes available, the page layout is
(incrementally) solved and drawn to the screen. After
the initial page load, scripts respond to events generated
by user input and server messages, typically modifying
the DOM. This may, in turn, cause the page layout to be
recomputed and redrawn.



Figure 1: The architecture of today’s web browser.

5 Parallelizing the Frontend
The browser frontend compiles an HTML document into
its object model, JavaScript programs into bytecode, and
CSS style sheets into rules. These parsing tasks take
more time that we can afford to execute sequentially:
Internet Explorer 8 reportedly spends about 3-10% of its
time in parsing [13]; Firefox, according to our measure-
ments, spends up to 40% time in parsing. Task-level par-
allelization can be achieved by parsing downloaded files
in parallel. Unfortunately, a page is usually comprised of
a small number of large files, necessitating paralleliza-
tion of single-file parsing. Pipelining of lexing and pars-
ing may double the parallelism in HTML parsing; the
lexical semantics of JavaScript prevents the separation
of lexing from parsing.

To parallelize single-file text processing, we have ex-
plored data parallelism in lexing. We designed the
first work-efficient parallel algorithm for finite state ma-
chines (FSMs), improving on the work-inefficient al-
gorithm of Hillis and Steele [5] with novel algorithm-
level speculation. The basic idea is to partition the input
string among n processors. The problem is from which
FSM state should a processor start scanning its string
segment. Our empirical observation was that, in lex-
ing, the automaton arrives to a stable state after a small
number of characters, so it is often sufficient to prepend
to each string segment a small suffix of its left neigh-
bor [1]. Once the document has been so partitioned, we
obtain n independent lexing tasks which can be vector-
ized with the help of a gather operation to allow simulta-
neous reads from a lookup table. On the CELL proces-
sor, our algorithm scales perfectly at least to six cores.
To parallelize parsing [14], we have observed that old
simple algorithms are a more promising starting point
because, unlike the LR parser family, they have not been

optimized with sequential execution in mind.

6 Parallel Page Layout
A page is laid out in two steps. Together, these steps
account for half of the execution time in IE8 [13]. In
the first step, the browser associates DOM nodes with
CSS style rules. A rule might state that if a paragraph is
labeled important and is nested in a box labeled second-
column, then the paragraph should use a red font. Ab-
stractly, every rule is predicated with a regular expres-
sion; these expressions are matched against node names,
which are paths from the node to the root. Often, there
are thousands of nodes and thousands of rules. This step
may take 100–200ms on a laptop for a large page, and a
magnitude longer on a handheld.

Matching a node against a rule is independent from
others such matches. Per-node task partitioning thus ex-
poses 1000-way parallelism. However, this algorithm
is not work-efficient because tasks redo common work.
We have explored caching algorithms and other sequen-
tial optimizations, achieving a 6-fold speedup vs. Fire-
fox 3 on the Slashdot home page, and then gaining, from
locality-aware task parallelism, another 5-fold speedup
on 8 cores (with perfect scaling up to three cores). We
are now exploring SIMD algorithms to simultaneously
match a node against multiple rules or vice versa.

The second step lays out the page elements accord-
ing to the styling rules. Like TEX, CSS uses flow lay-
out. Flow layout rules are inductive in that an element’s
position is computed after the preceding elements have
been laid out. Layout engines thus perform (mostly)
an in-order walk of the DOM. To parallelize this se-
quential traversal, we formalized a kernel of CSS as
an attribute grammar and reformulated the layout into
five tree traversal passes, each of which permits par-
allel handling of its heavy leaf tasks (which may in-
volve font computations). Some node styles (e.g., floats)
do not permit breaking sequential dependencies. For
these nodes, we utilize speculative parallelization. We
evaluated this algorithm with a model that ascribes uni-
form computation times to document nodes for every
phase; task parallelism (with work stealing) accelerated
the baseline algorithm 6-fold on an 8-core machine.

7 Parallel Scripting
Here we discuss the rationale for our scripting language.
We start with concurrency issues in JavaScript program-
ming and the parallelization that we expect to be bene-
ficial. We then outline our actor language and discuss it
briefly in the context of an application.

Concurrency JavaScript offers a simple concurrency
model: there are neither locks nor threads, and event
handlers (callbacks) are executed atomically. If the



DOM is changed by a callback, the page layout is re-
computed before the execution handles the next event.
This atomicity restriction is insufficient for preventing
concurrency bugs. We have identified two sources of
concurrency in browser programs—animations and in-
teractions with web servers. Let us illustrate how this
concurrency may lead to bugs in the context of GUI an-
imations. Consider a mouse click that makes a window
disappears with a shrinking animation effect. While the
window is being animated, the user may keep interact-
ing with it, for example by hovering over it, causing an-
other animation effect on the window. The two anima-
tions may conflict, for example by simultaneously mod-
ifying the dimensions of the window. Ideally, the lan-
guage should allow avoidance or at least the detection of
such “animation race” bugs.

Parallelism and shared state To improve responsive-
ness of the browser, we need to execute atomic call-
backs in parallel. To motivate such parallelization, con-
sider programmatic animation of hundreds of elements.
Simultaneous animation of many graphical elements is
common in interactive data visualization; serializing
these animations would reduce the frame rate of the an-
imation.

The browser is allowed to execute callbacks in paral-
lel as long as the observed execution appears to handle
the events atomically. To define the commutativity of
callbacks, we need to define shared state. Our prelimi-
nary design aggressively eliminates most shared state by
exploiting properties of the browser domain. Actors can
communicate only through message passing with copy
semantics (i.e., pointers and closures cannot be sent).

The shared state that may serialize callbacks comes in
three forms. First, dependences among callbacks are in-
duced by the DOM. A callback might resize a page com-
ponent a, which may in turn lead the layout engine to re-
size a component b. A callback listening on the changes
to the size of b is executed in response. We discuss below
how we plan to detect independence of callbacks.

The second shared component is a local database with
a relational interface. We desire a naming scheme for
relations that allows inexpensive detection of script de-
pendence, but have not yet decided on one; a static hi-
erarchical name space may be sufficient. Efficiently im-
plementing general data structures on top of a relational
interface appears as hard as optimizing SETL programs,
but we hope that the web scripting domain comes with a
few idioms for which we can specialize.

The third component is the server. If a server is al-
lowed to reorder responses, as is the case with web
servers today, it appears that it cannot be used to syn-
chronize scripts, but concluding this definitely for our
programming model requires more work.

The Scripting Language Both parallelization and
concurrency bug detection require analysis of depen-
dences among callbacks. Analyzing JavaScript is how-
ever complicated by its programming model, which con-
tains several “goto equivalents”. First, data depen-
dences among scripts in a web page are unclear because
scripts can communicate indirectly through DOM nodes.
The nodes are named with strings values that may be
computed at run time; the names convey no structure
and need not even be unique, complicating dependence
analysis. Second, the flow of control is similarly ob-
scured: reactive programming is implemented with call-
back handlers; while it may be possible to analyze call-
back control flow with flow analysis, the short-running
scripts may prevent the more expensive analyses com-
mon in Java VMs.

We illustrate JavaScript programming with an exam-
ple. The following program draws a box that displays
the current time and follows the mouse trajectory, de-
layed by 500ms. The script references DOM elements
with the string name "box"; the challenge for paralleliza-
tion is to prove that the scripts modify the tree only
locally. The example also shows the callbacks for the
mouse event and for the timer event that draws the de-
layed box. These callbacks bind, rather obscurely, the
mouse and the moving box; the challenge for the com-
piler is to determine which parts of the DOM tree are
unaffected by the mouse so that they can be handled in
parallel with the moving box.

<div id="box" s t y l e=" po s i t i o n : abso lu t e ; ">
Time : <span id="time"> [ [ code not

shown ] ] </span>
</div>
<sc r i p t >
document . addEventListener (

’mousemove ’ ,
f unc t i on ( e ) { // c a l l e d whenever the

mouse moves
var l e f t = e . pageX ;
var top = e . pageY ;
setTimeout ( func t i on ( ) { // c a l l e d 500

ms l a t e r
document . getElementById ( "box" ) .

s t y l e . top = top ;
document . getElementById ( "box" ) .

s t y l e . l e f t = l e f t ;
} , 500) ;

} , f a l s e ) ;
</s c r i p t >

To simplify analysis of callback dependences, we need
to make the following more explicit: (1) DOM node
naming, so that we can what do we write in the DOM
(1) dependences via layout;

To identify DOM names at JIT compile time, we pro-
pose static, hierarchical naming of DOM elements. We
hope that the names can be obtained syntactically, rather
than through type inference. This would allow the JIT



compiler to discover during parsing whether two scripts
operate on independent subtrees of the document; if so,
the subtrees and their scripts can be placed on separate
cores.

To prove that scripts commute, we will rely on the
static structural naming of DOM elements, which allows
us to detect if scripts reference a common subtree.

To account for dependences effected by the layout
engine (see “Parallelism and shared state”), the HTML
compiler will place a bound the changes in the DOM due
to incremental relayout. This way, we will know that a
change in a DOM leaf cannot propagate outside a par-
ticular DOM subtree, perhaps because the dimensions
of that subtree is fixed by the web page designer. This
will allow scripts to operate in parallel on multiple DOM
subtrees.

To make the flow of control analyzable, we make
the flow of data explicit, inspired by the FlapJax lan-
guage [10]. The sources of dataflow are events such
as the mouse and server responses, and the sinks are
the DOM nodes. Below, we show the same program
as an actor program. The program is now freed from
the plumbing of low-level DOM manipulation and call-
back setup. Unlike the FlapJax language, we avoid mix-
ing dataflow and imperative programming models at the
same level; imperative programming will be encapsu-
lated by actors that share no state (except for the DOM
and a local database).

Figure 2: The same program as an actor program.

A Document as an Actor Network We described
scripts as actors attached to the DOM: actors receive
DOM events and, as output, create new ones, like setting
DOM element attributes such as size and position (Fig-
ure 2). We now extend the use of actors in our semantic
models: DOM elements are actors that form a DOM tree
and collaborate on tasks like laying out the page. For ex-
ample, an image nested in a paragraph sends to the para-
graph its pixels so that the paragraph can prepare the
laid-out paragraph pixel buffer. During layout computa-
tion, the image may influence the size of the paragraph
or the image or vice versa, depending on styling rules.
Browsers already treat frames from different URLs as
actors; we just increase the granularity.

This extension makes the model/view partitioning
more uniform. The view domain contains the DOM,

layout, and animations rules and actors, and the model
domain contains application logic actors. What are the
benefits of this uniformity? First, the layout system
will be able to reuse back-end infrastructure for parallel
scripts and even allow user scripts. Second, once layout
rules are programmable, it is easier to extend or modify
the CSS layout model to fit an application’s needs. For
example, a math-mode layout system might be plugged
in. Finally, since a node’s display is constructed under
programmer control, richer transforms will be possible,
such as non-linear fish-eye zooms actings on true pix-
els. This task is hard in today’s browsers where DOM
nodes do not allow scripts to perform pixel-level intro-
spection of display frames nor efficient manipulations of
displays.

We discuss the culmination of our ideas in a hypo-
thetical application, Mo’lympics, for viewing Olympic
events, that we have been prototyping. An event con-
sists of a video feed, basic information, and “rich com-
mentary” made by others watching the same feed. Video
segments can be recorded, annotated, and posted into the
rich commentary. This rich commentary continuously
updates as both professional analysts and home viewers
post new information. A commentary might be another
video, an embedded web page, or an interactive visual-
ization. To view multiple events in Mo’lympics, events
can be moved and zoomed in on.

Our preliminary design appears to be implementable
with actors that have limited interaction through explicit,
strongly typed message channels. The actors do not
require shared state; surprisingly, message passing be-
tween actors is sufficient.

In the model domain, messages are user interface and
network events, which are on the order of 1000 bytes.
These can be transferred in around 10 clock cycles in
today’s STI Cell processor [11] and there are compiler
optimizations to improve the locality of chatty actors.
When larger messages must be communicated (such as
video streams or source code), they should be handled by
specialized browser services (video decoder and parser,
respectively). It is the copying semantics of messages
that allows this; such optimizations are well-known [4].

In the view domain, actors appear to transfer large
buffers of rendered display elements through the view
domain. However, this is a semantic notion; a view
domain compiler could eliminate this overhead given
knowledge of linear usage. This is another reason for
separating the model and view domains: specialized
compilers can make more intelligent decisions.

8 Related work
We draw linguistic inspiration from the Ptolemy project
[2]; functional reactive programming, especially the
FlapJax project [10]; and Max/MSP and LabVIEW.



We share systems design ideas with the Singularity OS
project [7] and the Viewpoints Research Institute [8].

Parallel algorithms for parsing are numerous but
mostly for natural-language parsing [14] or large data
sets; we are not aware of efficient parallel parsers for
computer languages nor parallel layout algorithms that
fit the low-latency/small-task requirements of browsers.

Handhelds as thick clients is not new [12]; current ap-
plication platforms pursue this idea (Android, iPhone,
maemo). Others view handhelds as thin clients (Deep-
Fish, SkyFire).

9 Summary
Web browsers could turn handheld computers into lap-
top replacements, but this vision poses new research
challenges. We mentioned language and algorithmic
design problems. There are additional challenges that
we elided: scheduling independent tasks and provid-
ing quality of service guarantees are operating system
problems; securing data and collaborating effectively
are language, database, and operating system problems;
working without network connectivity are also language,
database, and operating system problems; and more. We
have made promising steps towards solutions, but much
work remains.
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