
Parallel Schedule Synthesis for Attribute Grammars

Leo A. Meyerovich, Matthew E. Torok, Eric Atkinson, Rastislav Bodík
University of California, Berkeley ∗

{lmeyerov,mtorok,ericatkinson,bodik}@eecs.berkeley.edu

Abstract
We examine how to synthesize a parallel schedule of structured
traversals over trees. In our system, programs are declaratively
specified as attribute grammars. Our synthesizer automatically, cor-
rectly, and quickly schedules the attribute grammar as a composi-
tion of parallel tree traversals. Our downstream compiler optimizes
for GPUs and multicore CPUs.

We provide support for designing efficient schedules. First, we
introduce a declarative language of schedules where programmers
may constrain any part of the schedule and the synthesizer will
complete and autotune the rest. Furthermore, the synthesizer an-
swers debugging queries about how schedules may be completed.

We evaluate our approach with two case studies. First, we cre-
ated the first parallel schedule for a large fragment of CSS and
report a 3X multicore speedup. Second, we created an interactive
GPU-accelerated animation of over 100,000 nodes.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program Synthesis; D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel program-
ming

Keywords CSS, layout, sketching, attribute grammars, scheduling

1. Introduction
Programmers struggle to map applications into parallel algorithms.
We examine attribute grammars, which are a declarative formalism
for defining tree processors such as document layout engines. A
grammar is high-level because it does not specify a tree traversal
order that computes all node attributes. Algorithm designers opti-
mize parallel tree traversals, so our approach is to stage the problem
by first finding a schedule of traversals for a grammar.

We present a synthesizer that automatically schedules an at-
tribute grammar as a tuned choice of tree traversals. For example,
if our synthesizer schedules a grammar as a sequence of parallel
preorder tree traversals, our more traditional GPU compiler can
then implement them as level-synchronous breadth-first tree traver-
sals. As another example, we present a case study of synthesizing

∗Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instruments, Nokia, NVIDIA, Oracle, and Samsung.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright c© 2013 ACM 978-1-4503-1922-5/13/02. . . $15.00

Synthesizer

attribute grammar
Functional specification

?hole1
{HBOX:w}

postorder
?hole2

?hole3

Parallel schedule sketch

Traversal Compiler

postorder{HBOX:w
}

postorder
{HBOX:h,VBOX:h,w}

preorder
{HBOX: x,y}

preorder
{VBOX: x,y}

Parallel schedule

lock(); spawn(); recur(c1); ...

Executable solver
(multicore, GPU)

Figure 1: Synthesizer input/output: The synthesizer completes a
schedule sketch and gives it to a traditional parallel compiler.

a schedule for a multicore CSS [3] webpage layout engine. CSS
is a long-standing sequential bottleneck in web browsers that con-
sumes 15-22% of the CPU time [9, 21]. We found the need to guide
the choice of schedule, so we extend grammars with a language of
schedules where programmers may specify parts of the schedule
and let the synthesizer fill in the rest.

Our synthesizer explores the space of scheduling decisions:

• Decomposing a sequential traversal. Many computations
contain sequential dependencies between nodes. One correct
traversal over the full tree might then be sequential. However,
if the sequential dependencies can be isolated to a subtree, an
overall parallel traversal would be possible if it invokes a se-
quential traversal for just the isolated subtree. Our synthesizer
therefore explores multiple non-obvious alternatives.
• Composition of traversals. Programs such as browsers per-

form many traversals. Traversals might run one after another,
concurrently, or be fused into one. These choices optimize for
different aspects of the computation. Running two traversals
in parallel improves scaling, but fusing them into one parallel
traversal avoids overheads: the choice may depend on both the
hardware and tree size. Our synthesizer selects by autotuning.
• Distribution of computations across traversals. Even for a

fixed schedule, i.e., a composition of traversals, node compu-
tations might commute across traversals. Redistributing them
may improve memory use and avoid sequential bottlenecks.

These decisions explode the space of schedules. Today, program-
mers manually navigate the space by selecting a parallel schedule,
judging its correctness, and comparing its efficiency to alternative
schedules. The tasks are expensive: programmers globally reason
about dependencies, develop prototypes for profiling, and when-
ever the functional specification changes, restart the process.

We present three techniques for automatically synthesizing a
parallel schedule for an attribute grammar (Figure 1):

1: A scheduling language of parallel tree traversals that is ex-
plicit, orthogonal, and safe. A program can fully specify a sched-
ule to simplify code generation. It identifies the available paral-
lelism (composition of traversal types). The schedule is still high-
level: it is specified alongside the functional specification and com-
pilers handle the actual translation into lower-level code. We adapt
attribute grammar dependence analysis [13] to statically verify that
a schedule respects dependencies in the attribute grammar.

2: Schedule sketching for automatic parallelization. Fully auto-
matic scheduling obstructs programmer guidance. We extend our
scheduling language with a sketching [25] construct for partial
specification of schedules. A hole is a symbolic variable that can
be put in place of any term of an otherwise fully specified sched-
ule. As an extreme example, the entire schedule may be specified
as a hole. Our synthesizer fills in any holes to achieve a fully spec-
ified schedule. It finds a correct completion, and if there are mul-
tiple functionally correct ones, autotunes for the fastest. The same
sketching language acts as a query language for parallelism debug-
ging. Our synthesizer outputs sketch completions, and if the sketch
and functional specification are mutually inconsistent, it shows the
earliest stage in which the sketched schedule is incompletable.

3: Fast and extensible schedule synthesis. We struggled to im-
plement a synthesizer that is fast and can be extended with new
traversal types. Ours supports inputs and outputs beyond those of
current grammar compilers, such as schedule sketches as input con-
straints, returning multiple schedules as outputs, and parameteriza-
tion by multiple traversal types and composition operators.

Synthesis is a simple search: A) enumerate increasingly com-
plete schedules and B) invoke individual traversal verifiers to check
every partial schedule. We optimize both steps so synthesis is
O(n3) in the number of attributes. To synthesize exponential-time
extensions such as nesting schedules, we use incrementalization,
sketching, and greedy heuristics.

In summary, we present a synthesizer that automatically sched-
ules an attribute grammar as a tuned choice of tree traversals. First,
we introduce a language of structured traversal schedules that can
be sketched and verified (Section 2). Second, we describe our ex-
tensible O(n3) algorithm for synthesizing a correct schedule (Sec-
tion 3). Finally, we use the synthesizer for schedule autotuning,
parallelism debugging, and new primitives (Section 4).

We evaluate our approach with two case studies (Section 5).
First, we synthesized a parallel schedule for a fragment of the CSS
webpage layout language. CSS has long challenged paralleliza-
tion [21]. We report multicore speedups of 3X. Second, we imple-
mented a GPU-accelerated interactive visualization of 105 nodes.

2. Parallel Programming with Synthesis
Our system can be understood in terms of our case study of synthe-
sizing a webpage layout engine. Accordingly, we present a running
example of synthesizing the schedule for a simple layout language.

Its architecture is in Figure 1. A webpage is a tree with style
constraints over attributes on each node, which the layout engine
solves during tree traversals. Given the attribute grammar speci-
fying a layout language, our synthesizer finds a parallel schedule.
Next, our compiler that optimizes for different traversal patterns
reads the schedule and outputs a browser layout engine that exe-
cutes the traversals. In summary, our system uses several functions:

S
HBOX
HBOX
HBOX
 w="20" h=5"

HBOX
 w="15" h="5"

HBOX
 w="15" h="5"

(a) Input tree. Only some of the x, y, w, and h attributes are specified.

S → HBOX
{ HBOX.x = 0; HBOX.y = 0 }

HBOX→ ε
{ HBOX.w = inputw(); HBOX.h = inputh() }

HBOX0→ HBOX1 HBOX2

{ HBOX1.x = HBOX0.x;
HBOX2.x = HBOX0.x + HBOX1.w;
HBOX1.y = HBOX0.y;
HBOX2.y = HBOX0.y;
HBOX0.h = max(HBOX1.h, HBOX2.h);
HBOX0.w = HBOX1.w + HBOX2.w }

(b) Attribute grammar for a language of horizontal boxes.

AG → (Prod { Stmnt? })*

Prod → V → V*

Stmnt → Attrib = id(Attrib*) | Attrib = n | Stmnt ; Stmnt

Attrib → id.id
(c) Language of attribute grammars.

Figure 2: (a) input tree (b) attribute grammar specifying the layout
language (c) specification language of attribute grammars

Synthesizer: AG→ Sched (1)
Compiler: AG× Sched→ LayoutEngine (2)

LayoutEngine: ConstraintTree→ ConcreteTree (3)

This section describes specifying a layout language as an at-
tribute grammar and the synthesized parallel schedule. We found
implementing more complicated layout languages benefits from
support in controlling and reasoning about the schedule. Thus, we
conclude this section by extending the input language to support
sketching (partial specification) of the schedule. A sketch is a full
schedule, except any term (e.g., a choice of traversal type) can be
left as a hole (symbolic variable) that the synthesizer will fill in:

Synthesizersketch: AG× Schedsketch → Sched (4)

2.1 Attribute Grammars
Consider solving the tree of horizontal boxes shown in Figure 2 (a).
As input, a webpage author provides a constraint tree. Only some
node attribute values are provided: the widths and heights of leaf
nodes. The meaning of a horizontal layout is that, as is also de-
picted, the boxes will be placed side-by-side. The layout engine
must solve for all remaining x, y, width, and height attributes.

The layout language of horizontal boxes, H-AG (Figure 2 (b))
can be declaratively specified as an attribute grammar [15, 21,
24]. First, the specification defines the set of well-formed input
trees as the derivations of a context-free grammar. In this case, a
document is an unbalanced binary tree of arbitrary depth where
the root node has label S and intermediate nodes have label HBOX.
Second, the specification defines semantic functions that relate

HBOX

S

HBOX

HBOXHBOX

HBOX

x yhw

x yhw

x yhw

x yhw

x yhw

Figure 3: Data dependencies. Shown for constraint tree in Fig-
ure 2 (a). Circles denote attributes, with black circles being input ()
sources. Thin lines show data dependencies and thick lines show
production derivations.

attributes associated with each node. For example, the width of
an intermediate horizontal node is the sum of its children widths.
Likewise, the width of a leaf node is provided by the user, which is
encoded by nullary function call inputw():

HBOX→ ε { HBOX.w = inputw(); . . . } /* leaf */

HBOX0→ HBOX1 HBOX2 /* binary node */
{ . . . HBOX0.w = HBOX1.w + HBOX2.w }

Note that the evaluation order is not specified. For example,
while the above statements will be executed within different tree
traversals, the mapping is not specified. Likewise, an executable
implementation may need to reorder the statements within a traver-
sal. Whatever evaluation order is used to solve for the attribute val-
ues, the statements are constraints that must hold over them. At-
tribute grammars can therefore be thought of as a single assignment
language where attributes are dataflow variables.

The language of attribute grammars is defined in Figure 2 (c).
Our example assumes the following encoding. Semantic func-
tions are uninterpreted, so, for example, the addition of widths can
be rewritten as “HBOX0.w = f(HBOX1.w, HBOX2.w)”. Likewise,
constant values are equivalent to nullary function calls. To specify
grammars more complicated than H-AG , we provide extensions
(Section 4) whose scheduling reduces to attribute grammars.

2.2 Language of Schedules
Given an attribute grammar, our synthesizer statically finds a sched-
ule of tree traversals that will, for any tree described by the gram-
mar, solve all of its attributes. For example, the width and height at-
tributes of any H-AG tree can be solved in an initial postorder tree
traversal, after which the x and y attributes can be computed with
a preorder tree traversal. This two-pass schedule respects all data
dependencies possible in an input tree. For example, it respects the
data dependencies for Figure 2 (a), which are shown in Figure 3.
Finally, both traversals exhibit structured parallelism that a com-
piler can exploit: parallel preorder allows a top-down wavefront,
and postorder allows bottom-up.

Our synthesizer targets a language of traversals. A schedule for
H-AG that exercises different types of traversals is in Figure 4 (a).
It declares what simple tree traversals to use (parallel preorder and
parallel postorder); how to combine them (here, serially); and what
attributes to compute when a production is visited in each of these
traversals. This section also describes parallel and nested combi-
nation as well as sequential recursive traversals. Our synthesizer is
designed to support adding even more variants (Section 3).

A schedule is fed to simple compilers that produce evaluation
code. An evaluator has two parts, as Figure 4 (c) shows for H-AG :

1 parPost
2 HBOX0 → HBOX1 HBOX2 { HBOX0 .w HBOX0 . h }
3 HBOX → ε { HBOX.w HBOX. h }
4 ;
5 parPre
6 S → HBOX { HBOX. x HBOX. y }
7 HBOX0 → HBOX1 HBOX2

8 { HBOX1 . x HBOX2 . x HBOX1 . y HBOX2 . y }

(a) One explicit parallel schedule for H-AG .

1 void p a r P r e (void (∗ v i s i t) (Prod &) , Prod &p) {
2 v i s i t (p) ;
3 f o r (Prod r h s i n p)
4 spawn p a r P r e (v i s i t , r h s) ;
5 j o i n ;
6 }
7 void p a r P o s t (void (∗ v i s i t) (Prod &) , Prod &p) {
8 f o r (Prod r h s i n p)
9 spawn p a r P o s t (v i s i t , r h s) ;

10 j o i n ;
11 v i s i t (p) ;
12 }

(b) Naïve traversal implementations with Cilk’s [2] spawn and join.

1 void v i s i t 1 (Prod &p) {
2 sw i t ch (p . t y p e) {
3 case S → HBOX: break ;
4 case HBOX → ε :
5 HBOX.w = i n p u t () ; HBOX. h = i n p u t () ; break ;
6 case HBOX → HBOX1 HBOX2 :
7 HBOX0 .w = HBOX1 .w + HBOX2 .w;
8 HBOX0 . h = MAX(HBOX1 . h , HBOX2 . h) ;
9 break ;

10 }
11 }
12 void v i s i t 2 (Prod &p) {
13 sw i t ch (p . t y p e) {
14 case S → HBOX:
15 HBOX. x = i n p u t () ; HBOX. y = i n p u t () ; break ;
16 case HBOX → ε : break ;
17 case HBOX → HBOX1 HBOX2 :
18 HBOX1 . x = HBOX0 . x
19 HBOX2 . x = HBOX0 . x + HBOX1 .w;
20 HBOX1 . y = HBOX0 . y
21 HBOX2 . y = HBOX0 . y
22 break ;
23 }
24 }
25 p a r P o s t (v i s i t 1 , s t a r t) ; p a r P r e (v i s i t 2 , s t a r t) ;

(c) Scheduled and compiled layout engine for H-AG .

Sched → Sched ; Sched | Sched || Sched | Trav

Trav → TravAtomic Visit*{(TravAtomic 7→ Visit*)*}?

TravAtomic → parPre | parPost | recursive
Visit → Prod { Step* }

Step → Attrib | recur V
(d) Language of schedules (without holes)

Figure 4: Scheduled and compiled layout engine for H-AG .

<paragraph>
recursive

parPre

lorom <italic>

<huge>

ipsum dolor

sit

<paragraph>
recursive

<vbox>

amet

parPost

,

<hbox>

<hbox>

Figure 5: Nested traversal for line breaking. The two paragraph
are traversed in parallel as part of a preorder traversal and a sequen-
tial recursive traversal is used for words within a paragraph.

1. The traversals to execute. Line 25 shows the sequence of two
traversals for H-AG . An individual traversal can be parallel, as
shown for the naïve implementations for preorder and postorder
traversals in Figure 4 (b). Our compilers use the traversal
structure to safely apply further optimizations (Section 5.2).

2. Statements to execute within a traversal. Lines 17-22 show
the statements run for intermediate nodes in the second traver-
sal. Every attribute in the schedule corresponds to a unique
statement’s left-hand side attribute. The compiler automatically
infers the order of statements by topologically sorting them ac-
cording to their dependency graph (Section 3.2).

Multiple schedules may be correct. For example, the initial
parPost traversal for H-AG can instead be scheduled as two con-
current parPost traversals:

1 (parPost
2 HBOX0 → HBOX1 HBOX2 { HBOX0 .w }
3 HBOX → ε { HBOX.w }
4 ||
5 parPost
6 HBOX0 → HBOX1 HBOX2 { HBOX0 . h }
7 HBOX → ε { HBOX. h })
8 ; parPre . . . /* same as before */

Prior attribute grammar compilers would partition attributes into
independent sets [13], but not as part of a greater schedule.

We provide two traversal types in addition to parPre and
parPost. The first is a sequential recursive traversal. We use it, for
example, in our case study of document layout. Consider inserting
line breaks into the following stylized paragraph of XML strings:

lorom <italic><huge>ipsum dolor</huge></italic> sit

Due to <huge>, the paragraph may need a line break between
“ipsum” and “dolor.” Identifying the line break position involves
visiting the subtree <italic>...</italic>; the resulting line
break position is a data dependency influencing line breaks in the
remainder of the text. The sequence of arrows in the big circle of
Figure 5 show a trace of performing a recursive traversal over the
paragraph. The traversal visits a node n, then visits n’s first child,
revisits n, and repeats this process for the remaining children before
returning to the parent.

Our second traversal type is a nested traversal. With it, the tree
is partitioned into an outer region and disjoint inner regions. The
outer and inner regions are evaluated with different traversals, and
both may exploit parallelism. We can think of the inner regions

as macro-nodes that are evaluated in full (with their particular
traversal type) when the outer traversal encounters them.

To motivate the need for the nested traversal type, we revisit
line breaking. Even though line breaking of a single paragraph is
sequential, distinct paragraphs of text can be handled in parallel. To
avoid locally sequential computations from forcing the entire tree
traversal to be sequential, we allow the outer region to be paralle,
while each paragraph forms an inner region that is handled with the
sequential recursive traversal. Figure 5 shows how parallel evalua-
tion may be used to compute across different recursive paragraphs
and within individual parPost regions for this example.

To partition a tree into regions, each grammar production (and
thus each node of the tree) is mapped to a traversal type in the
synthesized schedule. A subtree composed from nodes of the same
traversal types form an inner region. For example, a nested traversal
of paragraphs with sequential traversals of nested text subtrees is
described as follows:

1 parPre
2 P → W { W. r e l a t i v e X }
3 { r e c u r s i v e 7→
4 W0 → W1 W2 {
5 W1 . r e l a t i v e X recur W1

6 W2 . r e l a t i v e X recur W2 } }

Overall, we see that schedules are explicit, orthogonal, and safe.
They are explicit in that a custom code generator can be invoked
without further high-level analysis. They are orthogonal in that
they sit alongside the grammar: changes to one are often made
independent of the other. Finally, they are safe. Traditional attribute
grammar analyses can be used to check that a schedule does not
violate a dependence in the attribute grammar (Section 3). If there
is a bug, it is in the functional specification as an attribute grammar
or somewhere in the implementation of the compiler toolchain.

2.3 Sketching
Specifying a full schedule is difficult. There are many attributes to
schedule within a traversal, and often times, it is unclear whether
a schedule is possible. We introduce a sketching language where
programmers can specify parts of the schedule they care about and
leave a hole, ?hole, anywhere else. The synthesizer will fill in the
hole, even if the hole is the entire schedule.

We can concisely specify the preceding schedules as follows:

parPost ?hole1 ; parPre ?hole2 (5)
(parPost ?hole3 ; parPost ?hole4) ; ?hole5 (6)

?hole6 (7)

In the first example, the synthesizer finds that the width and height
attributes can be computed in ?hole1 and the remaining in ?hole2.
The second example can be completed in several ways. Most
prominently, ?hole5 may be a parPost or a sequential recursive
traversal. By default, our synthesizer picks the first parallel traver-
sal it finds, and our autotuner (Section 4.1) can optimize the choice.

Sketching has various uses. The third variant, ?hole6, enables
automatic parallelization, which helps with prototyping. As an at-
tribute grammar grows and is shared by programmers, sketches en-
able static checks that program edits do not break the parallelization
scheme. Finally, sketches speed up synthesis time (Section 3.1).

3. Schedule Synthesis Algorithm
Our synthesizer takes an attribute grammar and a sketch as input,
and outputs a set of schedules. It is designed to support multiple
traversal types, multiple solutions, and rich attribute grammar and
schedule sketching languages. Our initial implementation used the
dependency analysis of Kastens [15], but it was too inflexible. Our
new algorithm is designed for modularity and speed:

1 parPre {x , y , w, h} incorrect: unsat {x,w,h}
2 parPre {y} correct: continue
. . . /* expand subtree to schedule x, w, h */ . . .

3 parPost {x , y , w, h} incorrect: unsat {x,y}
4 parPost {w, h} correct: continue
5 _ ; parPre {x , y} correct: complete
6 _ ; parPost {x , y} incorrect: unsat {x,y}
7 _ ; (parPre {x} | | _) correct: continue
8 _ ; (_ | | parPre {y }) correct: complete
9 _ ; (_ | | parPost {y }) incorrect: unsat {y}

10 _ ; (parPre {y} | | _) correct: continue
11 _ ; (_ | | parPre {x }) correct: complete
12 _ ; (_ | | parPost {x }) incorrect: unsat {x}
13 _ ; (parPost {y} | | _) incorrect: unsat {y}
14 _ | | parPre {x , y} incorrect: unsat {x}
15 _ | | (parPre {y} ; _) correct: continue
16 _ | | (_ ; parPre {x }) incorrect: unsat {x}
17 _ | | (_ ; parPost {x }) incorrect: unsat {x}

. . .
18 parPost {w} correct: continue
19 _ | | parPre {x , y , h} incorrect: unsat {x,h}
. . .

Figure 6: Trace of synthesizing schedules for H-AG . Note that
scheduling of “||” does not use the optional greedy heuristic.

Simple enumerate-and-check The algorithm enumerates sched-
ules and checks which are correct. Checking is for individual
traversal types and for traversal compositors, and checkers are writ-
ten independently of one another. Enumeration is simply syntactic.
Adding a new traversal type involves adding a checker and syntax.

Optimization Naïve enumerate-and-check is too slow. Without
significantly changing the interface for adding checkers, we opti-
mize synthesizing one schedule to be O(n3). Some features are
still slow, such as nested traversals, so we introduce optimizations
of incrementalization, greediness, and sketching.

We now overview our high-level algorithm. After, we describe
how to check the correctness of an overall schedule and individual
traversal, and then analyze the correctness of our optimizations.

3.1 The Algorithm
We split discussion of optimizations between finding one schedule
and finding many. Figure 6 demonstrates an algorithm trace for
enumerating schedules of H-AG . Figure 9 shows the full algorithm.

Synthesizing one schedule isO(A3) in the number of attributes.
The algorithm finds an increasingly long and correct prefix of the
schedule (prefix expansion). At each step, it tries different suffixes
until one succeeds, where a suffix “parPre{x,y}” is a traversal type
and attributes to compute in it. When a correct suffix is found, it is
appended to the prefix and the loop continues on to the next suffix.
Finding one suffix involves trying different traversal types, and for
each one, different attributes. Only the suffix needs to be checked
(incremental checking), and checking a suffix is fast (topological
sort). Finally, finding a set of attributes computable by a particular
traversal type only requires O(A) attempts (iterative refinement).

We consider each optimization in turn:

1. Prefix expansion. The synthesizer searches for an increasingly
large correct schedule prefix. Every line of the trace represents
a prefix. If a prefix is incorrect, no suffix will yield a correct
schedule. Therefore, the only prefixes that get expanded are
those that succeed (lines 2, 4, 7, 10, 15, 18).
To synthesize only one schedule, only one increasingly large
prefix is expanded. Line 2 has a correct prefix, so only “parPre{y}”

would be explored. Either no schedule is possible at all, or if
there are any, one is guaranteed to exist in the expansion. In this
case, “parPre{y} ; parPost{w,h} ; parPre{x}” would be found.

2. Incremental checking. Line 4 checks prefix “parPost{w,h}”
for attributes “w” and “h.” Therefore, lines 5-17 can check the
suffix added at each line without rechecking “parPost{w,h}”.

3. Topological sort. We optimize checking a suffix by topologi-
cally sorting the dependency graph of its attributes (rule checkβ

in the next subsection). Topologically sorting a graph isO(V +
E). It is O(A) in this case because V = A, and as the arity of
semantic functions is generally small, E is O(A).

4. Iterative refinement. The algorithm iteratively refines an over-
approximation of what attributes can be computed in a suffix by
removing under-approximations of what cannot. For example,
the check in line 1 for parPre{x,y,w,h} fails with error {x,w,h},
which details the attributes with unsatisfiable dependencies.
Computing fewer attributes cannot satisfy more dependencies,
so no subset of {x,w,h} has satisfiable dependencies either.
Therefore, the next check is on a set without them: {y}.
Subtraction of attributes can be performed at most A times be-
fore reaching the empty set. Checking one refinement invokes
the O(A) topological sort. Put together, finding attributes com-
putable by a suffix is O(A2).

Every traversal computes at least one attribute, so there are at most
A traversals. A constant number of traversal types are examined for
each suffix, and synthesizing each one is O(A2). Synthesizing one
schedule is therefore O(A3).

Features such as nesting regions and enumerating all schedules
are exponential, which we address with three further optimizations:

1. Backtracking. To emit multiple schedules, prefix expansion
is modified to backtrack. After a schedule is completed or a
suffix fails, the synthesizer backtracks to the most recent correct
prefix. For example, line 8 is a complete and correct schedule.
Backtracking returns to the earlier correct prefix of line 7 and
tries an alternative suffix in line 9.

2. Interleaved sketch unification. Sketching prunes the search.
For example, “parPost ?hole || ?hole” enables skipping lines 1-
3 because they do not start with a parPost traversal. Lines 5-13
could also be skipped because the compositor is not “||”.
A sketch that provides a full schedule reduces synthesis to
checking, which is O(A). Sketching also enable features that
otherwise require exponential search to still synthesize in
O(A3). For example, scheduling nested regions is exponential
in the number productions, but if just the production partition-
ing is sketched, synthesis is still only O(A3).

3. Greedy heuristic. For any schedule “p ; q”, solving fewer at-
tributes in p will not enable solving q with fewer traversals.
Thus, to minimize the number of traversals, all such subsets are
pruned. For example, as line 4 found parPost{w,h}, line 19 skips
“parPost{w} ; _ ” and proceeds to “parPost{w} || _”.
Greediness reduces enumerating all schedules to only being ex-
ponential in the number of traversals. This is significant be-
cause, for example, our schedule for CSS has only 9 traversals.

In summary, synthesizing one schedule is O(A3), while emit-
ting all of them is exponential. Finally, constructs such as nested
traversals are still efficient when guided by sketches.

{A} p {B} {B} q {C}
{A} p ; q {C}

(seq)

{A} p {B} {A} q {C}
{A} p || q {B ∪ C}

(par)

Regions = {α 7→ V isit∗α} ∪
⋃
i

{βi 7→ V isiti∗}

∀ (γ 7→ V isit∗) ∈ Regions :
Cγ = alwaysCommunicateα(γ,B,Regions)
{A,Cγ} γ V isit ∗ {A ∪Bγ}
{A} α V isit ∗α {(βi 7→ V isiti)∗}? {A ∪

⋃
Bγ}

(nestα)

P = ∪Prodi Steps = ∪Stepj
B =

⋃
i

reachableβ(Prodi, P,A, Steps, C)

{A,C} β (Prodi { Stepj ∗ }) ∗ {A ∪B}
(checkβ)

{A} p {B} unify(sketch, p)

{A} p ∧ sketch {B}
(sketch)

Figure 7: Correctness axioms for checking a schedule

1 alwaysCommunicateparPre(β,B,M) =

2 {aW,W→X | (W→X Bβ) ∈M [β]

3 ∧
∧

(V→W Bγ)∈M [γ 6=β]
aW,V→W ∈ B ∪A}

(a) Communication check for region boundaries in a parPre traversal

1 s e t r e a c h a b l e parPre (W→X ,P ,A ,B ,C) :
2 r e a c h :=
3 {a∗,W→X | a∗,W→X ∈ A}
4 ∪ (C ∩ {aW,W→X |

∧
V→W∈P

W.aV→W ∈ B})

5 ∪ (C ∩ {aX,W→X |¬∃X→Y ∈ P})
6 whi le t rue :
7 p r o g r e s s := {a∗,W→X | a∗,W→X = f(b0, . . . , bn) ∈ F

∧ a∗,W→X ∈ B ∧
∧
bi ∈ r e a c h}

8 r e a c h := r e a c h ∪ p r o g r e s s
9 i f p r o g r e s s = ∅ :

10 break
11 re turn r e a c h

(b) Unoptimized production visit check for parPre traversal

Figure 8: Inter- and intra-region checkers for parPre.

3.2 Correctness Checking Axioms
Correctness axioms for checking an entire schedule are in Figure 7.
The judgements recursively check a composition of traversals until
reaching the traversal-specific checks of Figure 8. This procedure
is inefficient and monolithic; the next subsection will why our
optimizations correctly interleave the checks presented here.

Variables p and q denote schedules (<Sched>), A and B are
sets of attributes, and α and β are traversal types (<travAtomic>).
Attribute aW,V→W is decorated with its production (V→W) and

the non-terminal within it (W). We write a∗,V→W if a can be
associated with a non-terminal on either side of the production.

The composition and traversal rules are as follows:

Sequential and parallel composition: “;” and “ || ” The simplest
composition check is for sequencing: Hoare triple “{A} p ; q {C}”
(rule seq). If attributesA are solved before traversal “p ; q”, then at-
tributes C will be solved after. The conditions above the judgement
bar state this is true if p can always compute attributes B given
attributes A, and q can always then compute C. The judgement is
recursive. Analogous reasoning explains “ || ” (rule par).

Nested composition Rule nestα checks outer traversal type α over
regions where each one may have its own traversal type γ. Consider
an outer traversal type of parPre: as it progresses top-down, every
region might be guaranteed to have attributes of its root node
solved before evaluation proceeds within it. For each region (the
set of productions mapped to region traversal type γ), the rule calls
alwaysCommunicateparPre to find the set Cγ of attributes that are
externally set before the region is traversed. Rule nestα calls checks
for every region under the assumption that Cγ is already solved.

The first line of rule nestα means that, for any outer traversal α,
attributes scheduled for the outer region are treated as if they were
in their own region (γ = α). Traversals that do not use nesting are
degenerate: all the productions belong to one region (γ = α).

Traversal over a region The schedule for a traversal of type β
over a region is correct if every production visit schedule is correct
(rule checkβ). A production visit schedule Prodi { Stepj ∗ } is cor-
rect when there is an order for computing its scheduled attributes
Stepj∗ along which all of the data dependencies of the correspond-
ing semantic functions are satisfied.

Production visit Figure 8 (b) shows an unoptimized reachability
computation for visiting a production inside a parPre region. It is
the standard transitive closure, except for two subtleties:

First, only attributes that are meant to be scheduled are consid-
ered reachable (B membership check in line 7). Incorrectly includ-
ing unscheduled attributes would erroneously allow attributes with
unresolved dependencies to also be included.

Second, attributes computed by visits to adjacent productions
must be distinguished. Adjacent productions may be in the same
region or in another. In a parPre region, consider whenW is always
an intermediate node of the region and attribute aW,W→X ∈ B is
always set by a parent production V→W in the same region. For
this intra-region case, aW,W→X is guaranteed to be reachable at
the beginning of the visit toW→X . However, ifW can be the root
node of the region, we must also check aW,V→W is set by adjacent
regions before the root is visited. The checks for the intra-region
case and the alwaysCommunicate inter-region case are in lines
4-5 of nestα.

Sketches Rule sketch separates checking the correctness of a
schedule from whether a sketch matches it. First, a schedule must
be correct irrespective of the accompanying sketch. Second, the
schedule must syntactically match the schedule (unify). Later,
we provide semantically constrained sketches that are checked by
Prolog’s more general unifier (Section 4.2).

3.3 Correctness of the optimizations
The optimization are sound and complete with respect to the ax-
ioms in Figure 7. Soundness means there is a derivation tree for
a synthesized schedule, and completeness mean the optimizations
do not preclude sound schedules. Most of our optimizations prune
schedules from consideration by moving checks earlier, which is
sound, so we only manually analyze completeness here.

Prefix expansion Prefix expansion prunes schedules p ⊗ q if
p does not check. Completeness has two important cases. First,
pruning a failing prefix p does not prune sound schedules. Any
expansion p ⊗ q would have been rejected because composition
operator check would fail. Second, to synthesize only one schedule,
only one increasingly long prefix p needs to be expanded. Assume
some alternative prefix q succeeds. A sound completion to p would
be q modified to not include attributes already solved by p. If a
sound schedule exists, prefix expansion will return one.

Incremental checking Incremental checking is sound and com-
plete because it is the memoization of checking p for all comple-
tions p⊗ q.

Iterative refinement Refinement is complete because it only re-
moves attributes from consideration that cannot be scheduled. Con-
sider refining unreachable attribute a found by rule checkβ :
a ∈ B −

⋃
i reachableβ(Prodi, P,A, Steps, C)

If an alternative traversal computes a subset of Steps and a, the
assumption of what is reachable before a is weakened. Attribute a
will again be unreachable, and the schedule will fail. Refinement
prunes such schedules, and therefore does not affect completeness.

Interleaved unification with sketches Interleaving is complete
because any rejected schedule would have failed for the corre-
sponding unification check.

Greedy heuristic By design, the greedy heuristic is not complete.
Instead, classical attribute grammar languages [15] use greediness
to guarantee that a node is visited a minimum number of times.
We support traversal types of varying strengths, so this property is
not immediate. For example, “recursive ; parPre” can often (but not
always) be replaced by “parPre ; parPost; parPre”, which is longer
but more parallel. We instead guarantee that if there is a shorter
schedule, it uses different traversal types.

4. Extensions
We outline three extensions that use the attribute grammar synthe-
sizer: a schedule autotuner, a parallelism debugger, and grammar
extensions for classes, loops, and schedule constraints. These ex-
tensions are important because they influenced the architectural de-
sign of the synthesizer.

4.1 Autotuning
We use the synthesizer to autotune for a fast schedule. For exam-
ple, sketch “?hole1 ; parPre ?hole” is underconstrained so the auto-
tuner has freedom in choosing how to fill ?hole1. The synthesizer
provides two correct choices:

?hole1 ∈ { parPost {w, h } , parPost {w} || parPost {h} }

Which schedule is faster depends on both the hardware and the
size of expected trees. The first completion exposes more paral-
lelism. However, on webpage-sized trees for multicore hardware,
the overheads of a single traversal are high so the second comple-
tion is better. In general, the choice is not obvious because the selec-
tion of attributes for early traversals impacts the traversals possible
later, and performance varies depending on hardware and trees.

Our autotuner design is simple. First, the developer provides
input trees and hardware to test on. Second, the synthesizer enu-
merates all correct schedules. Finally, the autotuner compiles the
schedules, profiles them on the inputs, and returns the fastest one.

4.2 Embedding the scheduling DSL in Prolog for first-class
sketches and symbolic constraints

We implemented the synthesizer as a standard Prolog [6] relation.
Doing so enables schedules to be unified with arbitrary Prolog pro-
grams rather than just sketches with holes. For an intuition, holes

1 def s y n t h F a s t (s k e t c h) :
2 y i e l d s y n t h (∅ , A t t r i b u t e s , s k e t c h)

4 def s y n t h (prev , r e s t , s k e t c h) :
5 choose ⊗ ∈ { “;” , “||” }
6 i f ⊗ = “;” :
7 choose α ∈ { “ p a r P r e ” , “ p a r P o s t ” , . . . }
8 A := i t e r a t i v e R e f i n e (α , prev , r e s t)
9 i f A = r e s t :

10 u n i f y (s k e t c h , α A)
11 y i e l d α A
12 e l s e i f A = ∅ :
13 backtrack
14 e l s e :
15 u n i f y (s k e t c h , α A ; rhs1)
16 y i e l d α A ; s y n t h (p r ev ∪ A , r e s t − A , rhs1)
17 e l s e :
18 u n i f y (s k e t c h , lhs2 | | rhs2)
19 choose A ⊂ r e s t
20 p := s y n t h (prev , A , lhs2)
21 q := s y n t h (prev , r e s t A , rhs2)
22 y i e l d p | | q

24 def i t e r a t i v e R e f i n e (α , prev , r e s t) :
25 overapproxA = r e s t
26 do :
27 X = checkα (prev , overapproxA)
28 overapproxA = overapproxA − X
29 whi le X 6= ∅
30 y i e l d overapproxA
31 i f nonGreedy :
32 choose overapproxA ′ ⊂ overapproxA
33 y i e l d i t e r a t i v e R e f i n e (α , prev , overapproxA ′)

Figure 9: Optimized synthesis algorithm. Lines 10,15,18: early
unification with sketches. Lines 8,27: incremental checking. Line
26: iterative refinement. Line 31: toggle minimal length schedules.
Lines 12,28: pruning of traversals with unsatisfiable dependencies.

now simply map to the Prolog convention of using “_” for anony-
mous variables to automatically unify. Arbitrary Prolog programs
can be used to further constrain them.

Our embedding treats schedule terms as first-class citizens that
can be constrained with standard Prolog programs. For example:

1 Sched = [(T1 ,A1) , r e c u r s i v e , (T2 ,A2)] ,
2 s u b s e t ([x , y] ,A1) ,
3 (T2 = parPre ; T2 = parPost)

The first line defines the schedule as a sequence of two traversals.
The second line requires that the first traversal solves for, at least, x
and y attributes. It demonstrates that schedules are first-class values.
The final line specifies that the second traversal is either a parallel
preorder traversal or a parallel postorder traversal. These last two
lines demonstrate symbolic constraints beyond simple holes.

Our synthesizer provides constants recursive (“;”), parPre,
and parPost. Prolog provides operators [], (), subset , =, ;
(disjunction), and “,” (conjunction). Furthermore, it intreprets
identifiers with capital first letters as variables to unify (e.g.,
Sched, T1, A1, . . .).

We implemented the DSL with two techniques. First, we im-
plemented the synthesizer as a search in Prolog. This enables us
to reuse Prolog’s unification algorithm and, for the sketching lan-
guage, arbitrary Prolog programs. Second, as in Section 3, the al-
gorithm unifies each prefix rather than just the final schedule.

4.3 Parallelism Debugging
We reuse the sketching language as an interface for three schedule
debugging tasks: exploring, analyzing, and testing schedules.

Exploring underconstrained schedules The synthesizer can
show different completions to the programmer. This provides con-
crete understanding of the space of opportunities.

Analyzing bottlenecks Our embedding in Prolog enables queries
that analyze one or more schedules. The insight is that each sched-
ule is a first-class Prolog value. For example, the diff of two sched-
ule expression trees provides a lightweight change impact analysis.
If a set of attributes can be synthesized as a recursive traversal but
only a subset as parPre, the programmer knows that there is a prob-
lematic dependency for attributes in the difference of the two sets.

Testing schedules The synthesizer can be used to try new sched-
ule ideas. If the sketch cannot be filled in, the synthesizer returns
an informative error. In particular, it describes the “first” unsynthe-
sizable tree traversal in the sketch, meaning the bottom leftmost
failing traversal in a failing schedule’s expression tree.

We found support for exploring, analyzing, and testing schedules
enabled a productive workflow. Early on, a developer examines
possible schedules and fixes a subset using a sketch. Then, as ideas
form on how to remove bottlenecks in the schedule, a developer
can iterate between checking and analyzing schedules. Meanwhile,
development focused on the functional specification can rely on the
checker to detect any changes that violate the parallel schedule.

4.4 Loops, Interfaces, and Traits for Attribute Grammars
Our experiences with document layout languages led to extend-
ing attribute grammars with several features: recurrence relations
(loops), information hiding (interfaces), and code reuse (traits).

The synthesizer does not need to be modified to support these
constructs. Instead, we reduce the scheduling the extensions to that
of plain attribute grammars. Subsequent code generation inverts the
reduction to recover the used features. The following high-level
implementation strategies illustrate how this can be done:

Loops A tree may have a statically unbounded number of chil-
dren. We support recurrence relations for computing over them. To
demonstrate synthesis over non-trivial array expressions, consider
an intentionally obfuscated way to count the number of chidlren:

1 HBOX0 → HBOX1∗ {
2 HBOX0 . numChi ldren = HBOX1∗ [l a s t] . r o l l L e n 1 ;
3 HBOX1 ∗ [i n i t] . r o l l L e n 1 = 0 ;
4 HBOX1 ∗ [i] . r o l l L e n 1 = HBOX1∗ [i - 1] . r o l l L e n 2 + 1 ;
5 HBOX1 ∗ [i n i t] . r o l l L e n 2 = 0 ;
6 HBOX1 ∗ [i] . r o l l L e n 2 = HBOX1∗ [i - 1] . r o l l L e n 1 + 1 }

The synthesizer finds a loop interleaving rollLen1 and rollLen2 calls.
Loops resemble the uniform recurrence relations of Karp

et al. [7, 14]. Ours are more expressive in that loops support escap-
ing. For example, global sequential dependencies require recursive
traversals to recur mid-iteration. We restrict the language of array
indices to guarantee that the schedule for a few unrolled steps of
the recurrences generalizes to recurrences of any length.

Traits Traits support code sharing. They share declarations across
productions. For example, trait paintRect can be added to any pro-
duction with attributes {xV , yV , wV , hV , fillV } via
“V→W (paintRect) {. . . }”. Traits are implemented with macros.

Interfaces Interfaces support information hiding. The program-
mer associates every non-terminal with a set of attributes: its public
interface. For production V→W , semantic functions may read and
write any attribute of V but only interface ones of W .

(a) Votes Five-pass parallel treemap
visualizing Russian election data.

(b) CSS 9-pass parallel CSS engine run
on Wikipedia.

Figure 10: Visualizations rendered with two grammars

name loc 1st sketch found avg
hbox++ 305 5.6s 9.6s 54 2.7s
spiral 144 0.7s 0.9s 12 0.4s
votes 327 15.4s 22.0s 36 8.0s
css 1132 1919.6s 65.1s 100 445.4s

Figure 11: Synthesizer speed: 1st is the time to first schedule
without using a sketch. sketch is the time to first schedule using a
sketch of the traversal sequence. found is the number of schedules
found. avg is the average time to find a sketch.

We found that information hiding provides an opportunity for
optimization. The synthesizer only needs to schedule interface-
level attributes. The availability of the rest can be inferred locally.

5. Evaluation
We evaluated the key aspects of our synthesizer. First, our algo-
rithm synthesizes one or more schedules in a reasonable amount of
time. Second, by exposing traversal structure information to a par-
allel runtime, we see 2-7X speedups over other approaches. Third,
we describe the ability to add new traversal types. Finally, we per-
formed two case studies of being able to apply our synthesizer:
a multicore implementation of the CSS webpage layout language
achieves 3X speedups on 4 cores, and a GPU implementation of a
visualization of the 2011 Russian elections supports real-time in-
teractions with over 96,000 polling stations.

5.1 Synthesis Speed
We measured the time to synthesize several attribute grammars:

1. HBOX++ H-AG extended with more node types and styling

2. Spiral A radial visualization of space taken in a file system

3. Votes An interactive treemap of the 2011 Russian elections

4. CSS A CSS subset with floats, tables, and nested text

Figure 11 shows the lines of code for each one and various timings
on a 2.66GHz Intel Core i7 with 4GB of RAM.

Generally, synthesizing a schedule, whether an arbitrary one
(1st) or from a traversal sketch (sketch), takes less than 30 sec-
onds. The exception was CSS, which we discuss in its own subsec-
tion and was still fast.

Emitting all schedules is even faster per emitted schedule (avg)
than just finding the first. While the total time to emit all schedules
can be slow, we note that enumeration is for offline autotuning.
Finally, the greedy heuristic was necessary for enumerating sched-
ules. Even after one day of running the non-greedy algorithm for
CSS, most of the greedy CSS schedules were still not reached.

Total speedup Parallel speedup
Cores Cores

Configuration 1 2 4 8 2 4 8
TBB, server 1.2x 0.6x 0.6x 1.2x 0.5x 0.5x 1.0x
FTL, server 1.4x 2.4x 5.2x 9.3x 1.8x 3.8x 6.9x
FTL, laptop 1.4x 2.1x 1.6x
FTL, mobile 1.3x 2.2x 1.7x

Figure 12: Speedups and strong scaling across different back-
ends (Back) and hardware. Baseline is a sequential traversal with
no data layout optimizations. FTL is our multicore tree traversal
library. Left columns show total speedup (including data layout op-
timizations by our code generator) and right columns show just
parallel speedup. Server = Opteron 2356, laptop = Intel Core i7,
mobile = Atom 330.

5.2 Parallel Speedups From Structured Traversals
By statically exposing traversal structure (e.g., parPre) to our code
generators, we observe sequential and parallel speedups. Our code
generator performs pointer compression [17] and tiling [12] to
improve sequential and parallel memory access, and beyond the
scope of this paper, a new semi-static variant of work stealing to
schedule tiles. We compare to using the Intel’s TBB [23] dynamic
task scheduler that performs work stealing [2] over the tiles.

For random 500-1000 node documents in the hbox++ lan-
guage, we saw 6.9X parallel speedups on 8 cores with our custom
scheduler (FTL). For TBB, we saw slowdowns until 8 cores. The
results are consistent across hardware (Figure 12). Finally, we also
report sequential speedups of 1.2X-1.4X due to the memory opti-
mizations, yielding a combined superlinear speedup of 9.3X on 8
cores. Static scheduling yielded significant speedups.

5.3 Autotuning
We evaluated schedule autotuning speedups for hbox++ (laptop):

Greedy schedules We enumerated greedy schedules for hbox++
and compared performance on 1 and 2 cores. The relative standard
deviation for performance of different schedules (σ/µ) is 8%. The
best schedules for 1 and 2 cores are different. Swapping them leads
to 20-30% performance degradation, and the difference between
the best and worst schedules for the two scenarios are 32% and
42%, respectively. Autotuning schedules improves performance.

Greedy vs. non-greedy Our schedule enumeration is not exhaus-
tive because of the greedy heuristic, and therefore may miss fast
schedules (Section 3.2). For a fixed schedule of traversals with a
greedy attribute schedule, non-greedy attribute schedules were 0-
6% faster. On average, however, non-greedy schedules were 5%
slower. Greedy scheduling was safe for hbox++ .

5.4 Adding New Scheduling Primitives
Adding new scheduling primitives is simple. The average length of
our primitives is 61 lines of commented Prolog code. For example,
our nested traversal primitive was actually conceived of late into
the CSS case study and took only 82 lines of code.

As another example, consider adding the scheduling primi-
tives of spawn and join [2]. Their use is theoretically possible by
generalizing the approach of FNC-2 [13] to extend our recursive
traversal. Explicit schedules would include spawn and join points,
which requires extending the syntactic enumerator. Any recur-
sion point is a legal spawn but, if a statement depends on an at-
tribute set by a preceding spawn, a join must be scheduled be-
forehand. To check this property, we can modify topological sort-
ing (reachabletaskRecursive) to check reads. We did not add this
feature because, as Jourdan [13] report, its reliance on dynamic
scheduling suggests poor strong scaling (Section 5.2).

Parallel speedup
Cores

Backend Input 2 4 8
TBB Wikipedia 1.5x 1.6x 1.2x
TBB xkcd Blog 1.5x 1.8x 1.2x
FTL Wikipedia 1.6x 2.8x 3.2x
FTL xkcd Blog 1.5x 2.3x 3.1x

Figure 13: Parallel CSS layout engine. Run on a 2356 Opteron.

5.5 GPU Case Study: Interactive Treemap of Elections
We examined synthesizing GPU-accelerated code for an interactive
and animated treemap of the 2011 Russian legislative elections for
exploring anomalous voting activity. To run it, we created a GPU
backend that generates level-synchronous breadth-first tree traver-
sal [20] in OpenCL. Figure 10 (a) shows a real-time rendering of
the entire data set of 94,601 polling stations. A surprising result
was that parallelization was fully automated: the visualization pro-
grammer did not know the traversal schedule.

On a laptop-grade GPU (GeForce GT 650M with 384 cores),
we measured end-to-end performance on three data sets: 10,000,
100,000 and 1,000,000 nodes. They achieved 27.6 fps, 27.6 fps,
and 4.5 fps, respectively. We compared to running in our JavaScript
backend, representing another high-level language. On Chrome
21.0 and laptop, JavaScript ran at most 500 nodes at 27 fps.
Finally, we compared layout time between the GPU a multicore
CPU (server). The laptop GPU had a 1.6X speedup over the
server for layout, and not measured, directly invoked rendering
without transferring layout data.

5.6 Multicore Case Study: CSS Webpage Layout
We synthesized a multicore implementation of the CSS language
for webpage layout. The official CSS standard [3] is informal, writ-
ten assuming an implementation using sequential tree traversals,
and notoriously hard to implement even without considering paral-
lelism. Further challenging supporting CSS is its many interacting
features. For example, tables and nested text were not discussed in
previous work [21] and required a new schedule.

Figure 10 (b) shows our grammar’s result for laying out
Wikipedia. We implemented features suggested by Mozilla devel-
opers (floats, automatic tables, nested blocks and inlines), as well
as others seen in our tested websites, such as margins, padding,
borders, relative positioning, and lists. Additional features, such as
clearance and generated content, are ongoing targets for concurrent
work in a tested, mechanized, and verified semantics of CSS.

For parallelization, the developer sketched to explore schedul-
ing ideas. Usefully, edits to the grammar were checked for unsat-
isfiable dependencies and against the parallel schedule sketch. Our
current schedule is a sequence of 9 parallel traversals, including
one nested traversal with a sequential region for nested text. With
a sketch similar to this description, synthesizing the schedule takes
one minute. During development, the programmer typically expe-
rienced even faster synthesis times. He would manually incremen-
talize by only synthesizing edited classes.

We report a 3.1X speedup on layout (Figure 13). Our case study
presents two milestones: the largest executable yet declarative spec-
ification of CSS and the first case of strong scaling.

6. Related work
Parallel document layout Parallel layout is a difficult challenge.
Browsers load independent resources in parallel, which can be used
for parallel layout by decomposing a page into independent units.
Concurrent work by Mai et al. [19] lays out a page on a proxy

server, rewrites it as visually disjoint documents, and sends them
to a client incorporating shared memory parallelism optimizations
similar to those of Meyerovich and Bodík [21] for parallel render-
ing. We instead parallelize by optimizing just the layout engine.

Brown [4] propose applying task parallelism, which Meyerovich
and Bodík [21] implement using Cilk [2] and TBB [23] to weakly
scale a CSS subset. Burckhardt et al. [5] likewise apply task paral-
lel Revisions. We achieve strong scaling and on a bigger subset.

Attribute grammars Attribute grammars, first introduced by
Knuth [16] to define language semantics, are tractable for static
analysis and optimization. Saraiva and Swierstra [24] specify
non-automatic HTML table layout with attribute grammars and
Meyerovich and Bodík [21] first examine CSS.

Kastens [15] presents a sequential schedule synthesizer based
on a global dependency analysis. Jourdan [13] surveys parallel at-
tribute grammar evaluators that largely extend this idea. Most simi-
lar to our work are systems that find completely independent sets of
attributes, corresponding to parallel composition (“||”), and those
that treat each node as a dynamically schedulable unit. The former
is too coarse-grained to expose significant parallelism, while, as
reported by Jourdan for FNC-2, the latter rely upon runtime sched-
ulers such as work stealers and thus only weakly scale.

Synthesis Data structure synthesis is an old problem. Early on,
Low [18] examined multiple set implementations for an ALGOL-
60 variant. Recent work by Hawkins et al. examines tuning over
data structures for relational code [11]. Our paper leaves decisions
of how to implement tree data structures to our optimizing back-
ends and instead focuses on how to determine what tree traversal
types characterize the computations.

Our autotuning compiler backend is similar to the ATLAS [26]
framework for linear algebra in that we tune parameters such as
block size to optimize for a particular device. Autotuning is actively
being applied to further domains, such as work in stencils [8] by
Datta et al.: our backend examines the case of traversals over trees.

Similar to our schedule autotuner, FFTW [10] and PetaBricks [1]
select algorithms, not just parameters. However, programmers must
state what algorithms to try in those systems. Our synthesizer infers
what is possible. Elixir [22] infers dynamic task scheduling opti-
mizations for a single for-loop. Assuming extensions for structured
traversals, Elixir might replace our code generators for concrete
schedules. Hypothetically, our system would synthesize schedule
“parPost{w,y};parPre{x,y}” and could then ask Elixir for dynamic
task scheduling optimizations for traversal “parPre{x,y}”.

Finally, our language extension for programming with holes,
which we use for scheduling, is inspired by Sketch [25].

7. Conclusion
We presented a synthesizer that can schedule an attribute gram-
mar as a composition of parallel tree traversals. The synthesizer’s
enumerate-and-check design simplifies adding new traversal types
and extensions such as debugging. For O(n3) synthesis and prac-
tical autotuning, we optimized its algorithm. Furthermore, to en-
able control of schedules, we introduced a declarative language and
extended it with sketches. Finally, we successfully performed two
non-trivial case studies: multicore parallelization of a large frag-
ment of the CSS webpage layout language and GPU acceleration
of a Russian election animation. Put together, we demonstrate a
path to more productive and effective parallel programming.

Acknowledgments
We thank anonymous reviewers for presentation suggestions.
Adam Jiang and Edward Lu contributed to early versions of this
work. Discussions with Krste Asanovic, Boris Zbarsky, Robert

O’Callahan, Wolfram Schulte, Todd Mytkowicz, David Sheffield,
Shoaib Kamil, Scott Beamer, and others helped guide our case
studies.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. Amarasinghe. Petabricks: A language and compiler for algo-
rithmic choice. In PLDI’09, June 2009.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
In PPOPP’95, pages 207–216, 1995.

[3] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading style sheets,
level 2 CSS2 specification, 1998.

[4] H. Brown. Parallel processing and document layout. Electron. Publ.
Origin. Dissem. Des., 1(2):97–104, 1988.

[5] S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Two for
the price of one: a model for parallel and incremental computation. In
OOPSLA’11, pages 427–444, 2011.

[6] A. Colmerauer. An introduction to Prolog III. CACM, 33, July 1990.
[7] A. Darte and F. Vivien. Revisiting the decomposition of Karp, Miller

and Winograd. In ASAP, pages 13–25, 1995.
[8] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,

D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In SC’08.

[9] S. Dubey. AJAX Performance Measurement Methodology for Internet
Explorer 8 Beta 2. CODE Magazine, 5(3):53–55, 2008.

[10] M. Frigo and S. G. Johnson. The design and implementation of
FFTW3. IEEE, 93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[11] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data
representation synthesis. In PLDI’11, June 2011.

[12] F. Irigoin and R. Triolet. Supernode partitioning. In POPL’88.
[13] M. Jourdan. A survey of parallel attribute evaluation methods. In

Attribute Grammars, Applications and Systems, volume 545 of LNCS,
pages 234–255. Springer Berlin / Heidelberg, 1991.

[14] R. M. Karp, R. E. Miller, and S. Winograd. The organization of
computations for uniform recurrence equations. J. ACM, July 1967.

[15] U. Kastens. Ordered attributed grammars. Acta Informatica, 1980.
[16] D. E. Knuth. Semantics of context-free languages. TOCS, 2(2):127–

145, June 1968.
[17] C. Lattner and V. Adve. Automatic pool allocation: Improving perfor-

mance by controlling data structure layout in the heap. In PLDI’05.
[18] J. Low. Automatic data structure selection: an example and overview.

CACM, 21(5):376–385, 1978.
[19] H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Montesinos. A case

for parallelizing web pages. In HotPar’12, 2012.
[20] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph

traversal. In PPOPP ’12, pages 117–128, 2012.
[21] L. A. Meyerovich and R. Bodík. Fast and parallel webpage layout. In

WWW’10, pages 711–720, 2010.
[22] D. Prountzos, R. Manevich, and K. Pingali. Elixir: a system for

synthesizing concurrent graph programs. In OOPSLA ’12, October
2012.

[23] J. Reinders. Intel threading building blocks. O’Reilly, 2007.
[24] J. a. Saraiva and D. Swierstra. Generating spreadsheet-like tools from

strong attribute grammars. In GPCE’03, pages 307–323, 2003.
[25] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.

Combinatorial sketching for finite programs. In ASPLOS-XII, pages
404–415, 2006.

[26] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing,
27(1–2):3–35, 2001.

