[Preprint: Please do not redistribute]

Clustered Data Parallelism

Leo A. Meyerovich

UC Berkeley
Imeyerov@eecs.berkeley.edu

Abstract

Many data layout optimizations cluster data accesses
and memory into high-locality groups in order to op-
timize for the memory hierarchy. In this paper, we
demonstrate that similar clustering program transfor-
mations enable efficient vectorization. We call this ap-
proach clustered data parallelism (CDP). CDP enables
fast and power-efficient parallelism by partitioning a
data structure into clusters such that SIMD evaluation
is efficient within a cluster.

We describe the CDP latent in three common com-
putational patterns: map, reduce, and graph traversals.
Demonstrating the benefits of CDP, we present case
studies of instantiating the CDP patterns in order to
design fast and power-efficient binary search and web-
page layout algorithms. First, we increase binary search
SIMD scalability by using CDP to expose speculative
parallelism. Second, we achieve the first SIMD web-
page layout algorithm by using CDP to eliminate heavy
branching.

We report strong performance improvements. Tar-
geting AVX, we see a 5.5X speedup and 6.9X per-
formance/Watt increase over FAST, the previously
fastest SIMD binary search algorithm. Running web-
page layout with SSE4.2 instructions, we observe a
3.5X speedup and 3.6X performance/Watt increase
over an already optimized baseline.

[Copyright notice will appear here once ’preprint’ option is removed.]

Clustered data parallelism

Todd Mytkowicz

Microsoft Research, Redmond
toddm@microsoft.com

2012/2/1

1. Introduction

Many data layout optimizations cluster data accesses
and memory in order to optimize for memory hierar-
chies. In this paper, we instead apply clustering to op-
timize for a different hardware resource: SIMD units.

Parallelism poses an opportunity for improving the
performance per Watt of phones, laptops, and servers [2].
Same instruction multiple data (SIMD) architectures
are particularly attractive because they amortize in-
struction and memory costs across many data opera-
tions. Unfortunately, while SIMD is more efficient than
multiple instruction multiple data (MIMD) evaluation,
it is also more constrained [17]. As a consequence,
SIMD units often remain unused.

We present new SIMD patterns by adapting clus-
tering data locality optimizations. Locality optimiza-
tions largely descend from external sort algorithms [25]
that optimize for the high cost of memory access. The
variants we are inspired by optimize cache accesses
by transforming loops to access data in high-locality
groups. As examples, tiling [13] and co-allocation [10,
11] exploit the commutativity of computations and data
allocations to rearrange the access order and layout
of data into blocks. Computations proceed block-by-
block, where evaluating a block of nodes primarily ac-
cesses data in that block. Jo and Kulkarni [14] apply
similar reasoning to caches in multicore hardware.

Data layout transformations are already used for
vectorization, but with little emphasis on clustering.
For example, nested data parallel (NDP) language such
as NESL [6, 26] can convert an array of pairs into a
pair of arrays that are more amenable to SIMD access.
However, NDP does not lead to SIMD speedups when
the instructions across different data elements diverge,
the data elements are not accessed in parallel, or they
are not accessed in order.

Our insight is that, instead of vectorizing an entire
loop, we can find SIMD-friendly subintervals. Locality
clusterings already guarantee ordered access on arrays
and our clustering patterns further guarantee that tasks
in a cluster use the same instructions and can run in
parallel. These three properties improve vectorization.

We call such evaluation clustered data parallelism
(CDP). It is not fully data parallel because cross-cluster
evaluation may still be performed sequentially, such
as due to instruction divergence. To design CDP algo-
rithms, we reason about the size of clusters and the ef-
ficacy of SIMD evaluation within a cluster.

Clustered data parallelism

We present computational patterns that benefit from
CDP and apply them to two case studies: manually vec-
torizing webpage layout and binary search. These case
studies use three of the 13 patterns found as necessary
by Asanovic et al. [2] for general purpose parallel sys-
tems. Webpage layout is a node-labeled reduction (map
and reduce patterns) which is further complicated by
an irregular tree structure and heavy predication; clus-
tering load balances work and eliminates instruction di-
vergence. Binary search matches the graph traversal
pattern, with a loop-carried dependency on node order
that we break by speculatively clustering.

As an example, the pattern we use to vectorize web-
page layout also applies to parallel method dispatches:

— MIMD —

233

@parallel [shape.rotate() for shape in shapes]

— oval

= square

The problem is that different Shape subtypes will cause
rotate() calls to dispatch to different methods. As in-
dicated by the parallel instruction trace, this is fine
for MIMD evaluation. However, traditional vectoriza-
tion [28] would run all of the possible methods for each
datum, and upon completion, only store the result of the
correct ones. This is slow and performs useless work.
Our solution is simple: cluster by Shape subtype.

— MIMD —|

— oval
= SQuare
+ SIMDH}- SIMDH

@parallel for cluster in shapes.split(typeof):
if typeof(cluster[0]) == Oval:
@vector [Oval.rotate(shape) for shape in cluster]
elif typeof(cluster[0]) == Square:
@vector [Square.rotate(shape) for shape in cluster]

The clustering guarantees monomorphic dispatch within
the inner loop, saving time and avoiding useless work.
Our patterns reuse this idea of partitioning into SIMD-
friendly clusters. Through clustering, they also improve
load balancing and support out-of-order traversals.

In summary, this paper introduces clustered data par-
allelism. In CDP, data accesses and memory are clus-
tered in order to optimize for SIMD evaluation within a
cluster. To aid developers in designing CDP algorithms,
we present map, reduce, and graph traversal CDP pat-
terns inspired by clustering transformations originally
designed for increasing locality.

2 2012/2/1

We manually applied our patterns to vectorizing
webpage layout and binary search. First, we present
a webpage layout algorithm that exploits our map pat-
tern. Second, we present a binary search that exploits
our graph traversal pattern. We report a 3.5X speedup
and 3.6X performance/Watt increase over an already
optimized webpage layout baseline. We achieve a 5.5X
speedup and a 6.9X performance/Watt increase over the
previously fastest binary search algorithm, FAST [16].

2. Three CDP Patterns

We present our map, reduce, and out-of-order traversal
algorithms as parallel patterns and use the pattern pre-
sentation structure pioneered by Mattson et al. [21]. For
each pattern, we discuss the parallelization problem be-
ing addressed, the context in which to use the pattern,
forces impacting use, our core solution, and common
variations. We analyze the patterns in later sections.

2.1 Out-of-order traversals: hot path clustering

A common pattern is traversing a collection and com-
puting a value for each item. SIMD evaluation over
multiple items is difficult if the computation for one
item determines the next item to traverse. We can ap-
ply clustering when the probability of which item to
traverse given the previous one is sufficiently strong.

Context. Out-of-order traversals often appear in data
structures. For example, binary search traverses a tree
to find a node with some desired value. A simple loop
suffices for a tree with a breadth-first layout:

1i=0
2 while key[i] = v:
3 i=2xi+(1ifkey[i] < v else 2)

Each iteration performs a comparison in order to find
the node to examine for the next iteration.

Parallel evaluation of individual loop iterations is
challenged by a loop-carried dependency on i, the node
to examine. However, our vectorization pattern can be
applied if there is knowledge of hot subpaths through
the collection. We will examine in detail the simple
case of a left bias in the comparisons.

Impacting forces. The scalability of our core pattern
is a function of the predictability of hot subpaths.

Extending the pattern to more complex operations
over richer structures may introduce additional costs.
For example, if the comparison operator is extended to
inspect the values of child nodes, our reduce pattern

Clustered data parallelism

1i=0;

2 for bnodesBelow in [9, 1, 0]:

3 @vector m = [val < K[i + o] for o in range(0, 4)]
4 @vector check = (m == [True, True, True, True])
5 if check:
6
7
8

i=i+16 /* next hot subpath */
else:
iStart = i
9 track =0
10 forjinrange (4,0, —1):
11 track = track + ((1 << j) if val > K[i] else 0)
12 i=i+(1ifval < tree.datafijelse (1 << (j —1)))
13 i = iStart + (1 + track x bnodesBelow) x 16

14 /x ... handle the last iteration sequentially ... x/

Figure 1: CDP evaluation of binary search. The vector
length is 4, tree depth is 13, and comparisons bias left.

5 9/ IPAN Y B-node
| \ NN
4 6/7 10\11 13 14~ -
\ speculative path
(aligned)

binary search tree

node memory address

/AN NN,
6 38 39 42 43 45 46\,

Figure 2: Clustered tree layout for binary search. The
tree depth is 12 and data blocking is for an architecture with
vector and cache line length of 4.

(Section 2.3) can be combined with this one. The com-
position is subject to limitations of both approaches.

Solution structure. Our insight is that we can adapt
a locality clustering that prefetches hot subpaths to
now also compute in SIMD over the hot subpaths.
Each loop iteration runs the same instruction, so SIMD
instructions can compute across the cluster. For the
typical case, a SIMD check that the expected result was
achieved suffices for proceeding to the next cluster.

Without loss of generality, consider a binary search
where comparisons bias to the left. The first 8 com-
parisons would most likely be for breadth-first nodes

3 2012/2/1

[0, 1,3, 7] followed by [15, 31, 63, 127]. Shown in Fig-
ure 2, we cluster the tree as a B-tree [5] where each
B-node represents a subtree of depth four in order to
match a vector length of four. Crucially, we use a pre-
order layout for both the allocation of different B-nodes
and the layout of nodes within a B-node.

Our clustering can be first understood as a specu-
lative data locality optimization that arranges data ac-
cording to hot subpaths, similar to that of Chilimbi
et al. [10] and Ding and Kennedy [11]. The first four
likely comparisons, corresponding to the logical nodes
above, are for locations [0, 1, 2, 3]. The next most likely
four are for the first locations in the next B-node in
memory: [16,17, 18, 19]. Data loads benefit from the
speculative layout because, for example, when hard-
ware fetches location 0, it also prefetches locations 1,
2 and 3. Likewise, the fetch of location 16 also spec-
ulatively prefetches 17, 18, and 19. Misspeculating the
traversal order will load data from different cache lines,
but the cache lines are still from the same B-node.

We adapt the clustering for efficient SIMD eval-
uation. Instead of just speculatively prefetching data
for upcoming iterations, our pattern is to speculatively
compute over them in parallel as well. In the case of
a left bias, our algorithm in Figure 1 first performs all
of the comparisons for locations [0, 1, 2, 3] using just
1 SIMD instruction (line 3), and then checks that the
result is [True, True, True, True] (all less than) with an-
other (line 4). On success, the search proceeds to spec-
ulatively compute over the next B-node in memory,
etc. On failure, a sequential search is used to find the
correct path through the B-node, after which specula-
tive execution resumes for the next B-node. For ex-
ample, if the second SIMD comparison failed with
result [True, True, False, False], recovery would sequen-
tially traverse locations [16, 17, 18, 20] and then either
jump to the third or fourth child B-node.

Several optimizations are useful in practice. First,
we pad B-nodes so that SIMD loads are aligned. Sec-
ond, we store cold paths alongside hot paths in B-nodes
in order to lower misspeculation costs. Third, we do
not represent the last levels of the tree as B-nodes, de-
creasing memory consumption. These are analogous to
optimizations for the sequential case. Kim et al. [16]
describe complementary out-of-core optimizations.

Generalization. Our pattern generalizes beyond
left bias predictions. The preorder descendent of a
node (and B-node) is simply the most likely child

Clustered data parallelism

to be traversed next. The hot paths therefore fol-
low the same memory layout as in Figure 2. Conse-
quently, instead of expecting a SIMD comparison of
[True,True, True, True], line 4 of Figure 1 generalizes to
a check against the bit string of the expected path.
Algorithms beyond binary search can be encoded
with our pattern. For example, beyond the scope of
this paper, we also optimized the decision trees used by
a commercial “web-scale” AdaBoost recommendation
system. Instead of comparing each node against the
same value val, there is a different key to compare
against each individual node. As another variant, our
pattern may be applied to graph traversals by picking
a likely minimum spanning tree or using the common
encoding of an infinite tree by duplicating nodes.

2.2 Maps: branch condition clustering

Similar tasks are often independently performed on
all of the items of a collection. Vectorizing parallel
tasks that run evenly slightly different instructions is
challenging. Our intuition for CDP is that clustering
data and code based on predictable branch conditions
prevents divergence within a loop over a cluster.

Context. A common occurence of the map pattern is
in list comprehensions. List compressions are syntactic
forms, such as used by the following Python code:

[i+2ifi% 2==0elseix* 3 foriinrange(0,8)]

This code outputs list [2, 3, 4, 9, 6, 15, 8, 21] by evaluat-
ing the same conditional operation on each input list
entry. For our core map pattern, we assume that each
item is a scalar value. For example, if the map is over a
tree, we assume the operation on a node does not access
node parents nor node children.

Our pattern exploits that the instructions executed
for an item can be predicted by whether the item is odd
or even. Likewise, for webpage layout, the instructions
for a map over the tree of document nodes can be
predicted from the node type, such as Paragraph or List.

Impacting forces. Our map pattern is a relaxation
of the traditional vectorizable branch-free for—-loop
and therefore presumes many similar conditions. For
example, rather than operating over an array of struc-
tures, we assume data is already split into arrays [6].

Our pattern is sensitive to several factors. The cost of
clustering similar nodes should not outweigh the ben-
efit of clustered evaluation. Furthermore, our pattern
permutes the order of the collection, which may impact

4 2012/2/1

downstream computations. Finally, the amount of ex-
ploitable parallelism is determined by how many tasks
with the same branch behavior can be grouped.

Solution structure. We split the task being mapped
and the collection based on predictable branches. For
the Python example, CDP evaluation would be:

1 clusteredData =

2 {even:[iforiinrange(0,4)ifi%2==01],

3 ‘odd’: [i foriinrange(0,4)ifi%2==1]}
4 result =

5 (@vector [i+ 2 foriin clusteredData.even],
6 @vector [i « 3 for in clusteredData.odd])

By rewriting the loop into even and odd partitions, tra-
ditional loop vectorization can be applied to individual
clusters (lines 5 and 6). In this case, the computation
to perform is so small that the clustered data should be
precomputed to see any vectorization speedups.

Generalization. The transformation can be under-
stood as a variant of loop fission and conditional hoist-
ing. The hoisted conditionals are now cluster condi-
tions: a loop is executed for each branch body and only
performed on data that matches the condition.

Our pattern supports operations on different types
of collections. For example, it generalizes to topolog-
ical traversals over trees. In a top down parallel traver-
sal, the nodes of a level can be computed in any or-
der, so they can be clustered. As another generaliza-
tion, branch conditions can be nested or indirect. For
example, if each node is a structured object with several
fields, a nested conditional might run different branches
based on different node field combinations. Branching
may also occur due to method dispatch, such as the
rotate example in Section 1. Our CSS case study (Sec-
tion 4.2) exercises all of these variations.

2.3 Reductions: load balanced clustering

Parallel iterations over graphs often reduce the neigh-
bors of each node. When the neighborhood size is
small, SIMD instructions can still be used by simul-
taneously computing multiple reductions in lockstep,
similar to segmented scans. [9] The reduction pattern
is distinct from the previous branching map pattern.
Reductions need not branch. Likewise, for maps, nodes
need not communicate with their neighbors.
Clustering solves the problem of load imbalance.
If simultaneous reductions have different lengths, the
SIMD unit is occupied until the longest reduction com-
pletes. We balance completion times by running reduc-

Clustered data parallelism

1 for level in tree.levels.reverse():

2 @parallel for nin level:

3 if node.type == MAX_TYPE:

4 node.value = max([c.value for ¢ in node.children])
5 elif node.type == MIN_TYPE:

6 node.value = min([c.value for c in node.children])

Figure 3: Naive node-labeled reduction

tions in same-length clusters. Furthermore, to prevent
domination by relayout costs (swizzling) induced by a
naive clustering, we present a recursive scheme.

Context. Compilers and XML processors reduce
over trees. They invoke visitors that traverse trees and
compute attribute values for nodes as they are encoun-
tered. For example, webpage layout computes the sizes
of nodes in one pass and their dimensions in another.

Reductions access the neighborhood of each node.
For example, consider the node-labeled reduction over
a tree in Figure 3 where leaf nodes have integral values
and intermediate nodes are flagged as MAX_TYPE or
MIN_TYPE. The reduction computes the value for each
node based on the flag and the values of its children.

We address the challenge that there may be few
children per node. To exploit parallelism, one node
value can be computed simultaneously with the values
for others on the same tree level. We optimize the
choice by clustering based on neighborhood size. For
example, a shopping cart on a webpage has a similar
subtree for each item, so we exploit that the operations
on one subtree are identical to operations on another.

Impacting forces. We require many nodes to be on
the same level. Furthermore, the benefit from the reduc-
tion pattern is proportional to the amount of computa-
tion spent in computing over the neighborhood for each
node. Finally, irregularities such as instruction branch-
ing may require composition with our other patterns.

Solution structure. We observe that clustering nodes
based on the number of children load balances simul-
taneous evaluation of multiple reductions in a cluster.

As an example of load imbalance, consider SIMD
reductions over the breadth-first layout in the style
of Chatterjee et al. [9]. Reducing over the children
of nodes [6,7,8,9,10,11,12,13] in Figure 4 (a) runs two
SIMD pairwise max instructions, one for each span
(16,7,8,9] and [10,11,12,13]):

5 2012/2/1

2 3 4 5
6 7 8 9 10 1 12 13
14 15 16 17 18 19 20 21

6 8 10 | 12 7 9 11 | 13
14 1 16 | 18 | 20 15 | 19 17 | 21
22 | 26 23 | 27 24 | 28 25 | 29

(b) Nested clustering

Figure 4: Clustering for the reduce pattern. Before (a) and
after (b). Shape denotes MIN_TYPE or MAX_TYPE and labels
denote logical ID. Adjacent nodes are in the same cluster.

1 (value[6],value[7],value[8],value[9]) =

2 max4([value[14],NOOP,value[16],NOOP],
3 [value[15],NOOP,value[17],NOOP])
4 (value[10],value[11],value[12],value[13]) =

5 max4([value[18],NOOP,value[20],NOORP],
6 [value[19],NOOP,value[21],NOOP])

For each node of a span, SIMD evaluation will simul-
taneously compute over the same child index as for
any other node in the same span. For example, the left
operand is the first child of each span member and the
second operand is the second children. If any of the
nodes had a third child, we would have to add two more
max statements, one for the third children of each span.
Our imbalance problem is that, because the reductions
have different lengths, there are many NOOPs.

Our initial solution in Figure 4 (b) clusters nodes
based on the number of their children. The clusters are
[6,8,10,12] and [7,9,11,13], requiring only the following
single max4 under a naive breadth-first data layout:

1 (value[6],value[8],value[10],value[12]) =
2 max4([value[14],value[16],value[18],value[20]],
3 [value[15],value[19],value[17],value[21]])

Clustered data parallelism

Calls of max4 are only for cluster [6,8,10,12]. There are
no calls for [7,9,11,13], whose reduction lengths are 0.

The breadth-first layout in Figure 4 (a) is too costly
if too few instructions are computed for each node.
For example, loading values for nodes [14,16,18,20] is
an inefficient gather of out-of-order data, which may
dominate the computation. A similar problem occurs if
we naively cluster each level of the tree by the number
of children of each node.

Our final solution is to recursively cluster the nodes
and layout the data as in Figure 4 (b). For example,
nodes [2,3,4,5] are clustered, and then, recursively, so
are their children. The children are colocated by their
sibling number. For example, nodes [6,8,10,12] are colo-
cated as the first children of cluster [2,3,4,5], as are
[7,9, 11, 13] because they are the second children. As
a result, the i*" children of a cluster can be directly
loaded for the i*" SIMD step of a reduction and the re-
sult of a reduction can be directly stored. For example,
logical nodes [6,8,10,12] are now computed as:

1 (value[5],value[6],value[7],value[8]) =
2 max4([value[13],value[14],value[15],value[16]],
3 [value[17],value[18],value[19],value[20]])

Clustering for load balanced SIMD evaluation intro-
duced a data locality inefficiency not present in the un-
balanced version: recursive clustering eliminates it.

Generalization. Our example supported the condi-
tional in the reduction by composing with the map pat-
tern. We included node.type as part of the clustering
condition, so each cluster is guaranteed to branch in the
same direction. For example, nodes [15,19] and [17,21]
of Figure 4 (b) benefit from this clustering.

Different data structures such as graphs can be used
as is described in the generalization of Section 2.1.

3. Analysis

In this section, we analyze the performance of our
patterns, how to generalize them, and how to compose
them. We found two basic properties to be central to our
reasoning. First, the compression ratio measures the
ability to cluster work. Second, the clustering condition
is the invariant a cluster holds, which in turn impacts
the speedup achieved in evaluating a single cluster.

3.1 Analyzing map, reduce, and search

CDP speedup can be analyzed in terms of properties 7
and T,.. We define r as the compression ratio: the num-
ber of clusters evaluated over the amount of sequential

6 2012/2/1

work. We define T to be the optimized time to evaluate
a cluster of nodes that satisfy the clustering condition.
Total speedup is therefore 1 / 1 T..

For example, sequential evaluation of the map in
Section 2.2 has » = 1 (singleton clusters) and T, = 1
(constant work per node). As expected, total speedup is
1 (no speedup). Seperate clustered evaluation of odds
and evens using length p vectors has r = 2/n and
T. = (n/2)/p, so the total speedup is p.

Our reduction pattern behaves similar as the map
pattern. As with segmented scans [9] and our maps,
speedup is proportional to cluster length rather than the
number of children for a node. Important for commod-
ity hardware, we do not require typically unavailable
scan primitives. Finally, we do not expect small clus-
ter sizes: the pigeonhole principle applied to large trees
with a low branch count guarantees large clusters.

We also analyze binary search in terms of r and T:

S (1)
p
T.=1+Prmissjp=1+ (1 -b")p (2
1 P

speedup = (3)

CrT. 1+p(1—0bp)
The intuition for r is that our algorithm splits the search
down the tree into clusters of p levels. The intuition for
T, is that the time to compute over a cluster is the cost
of a correct speculation (1) and, in case of a misspec-
ulation (probability 1 — bP), the time to compute the
cluster sequentially (p). For example, if the speculation
hit rate is high (b = 1), the speedup is p. Likewise,
there is no speedup if the hit rate is low (b = 0).

In contrast, the FAST vector binary search algorithm
of Kim et al. [16] will speculatively perform all of the
comparisons for a subtree in parallel, not just for those
on a hot path. The time to compute over a cluster of p
levels therefore drops to 7. = p/ log p. The total speed
of FAST is only log p, compared to p for our algorithm
when b approaches 1.

CDP algorithms vary in 7 and 7. For example, much
of our effort in the CSS case study was in lowering .
Highlighting the importance of T, our binary search
scales linearly rather than logarithmically on hot paths.

3.2 Relayout Time

The time spent clustering is important. However, we
did not find it to be a key concern for our case studies.

We use a simple two-pass algorithm for the map and
reduce clusterings. The first pass determines the clus-

Clustered data parallelism

ters and the second scatters the data. We also optimized
finding a node’s map cluster by hashing object fields.
Both clusterings are embarrassingly parallel.
Clustering hot paths is more complicated. Chilimbi
et al. [10] pioneered clustering techniques for hot path
locality that might be adapted for JIT vectorization.

3.3 Clustering conditions for loop optimizations

While our focus is effective vectorization, there are
other applications of clustering. Generalizing, we split
loops into an outer loop and an inner loop by clustering
the loop interval. The clustering guarantees a strong in-
variant that makes the inner loop optimizable (7). As
sample sequential applications, we reused the map pat-
tern to improve branch prediction and to hoist compu-
tations to occur between the inner and outer loops.

3.4 Compressing and composing clusterings

Pattern composition can be thought of as combining
clustering conditions. However, we must not overly
weaken the compression ratio when doing so.

Consider again the node-labeled reduction in Fig-
ure 3. We could partition based on node.type, enabling
the map pattern, or on len(node.children), enabling the
reduce pattern. The choice between node types is small,
so the r for the map pattern is good, though the small
amount of compute per node makes the 7, of the re-
duce pattern attractive. Our solution is to exploit both
patterns: we check both of the clustering conditions for
each node. The trade-off is that, r is, at best, the worse
of the original compression ratios.

We can compose patterns without ruining the com-
pression ratio. Of note, we implemented a composition
operator that switches between clusterings. It partitions
data into blocks and precomputes different clusterings
for each block, one per clustering condition. Evaluation
locally permutes a block depending on which cluster-
ing is needed. The compression ratio is improved at the
cost of dynamic permute instructions added to 7. Ap-
ple and IBM’s PowerPC processors provide these local
SIMD permute primitives, but software emulation of
them dominated our experiments on Intel hardware.

4. Experiments and Case Studies

We manually rewrote several programs to follow our
clustering patterns and call subword-SIMD compiler
intrinsics. On map and reduce microbenchmarks, we
see 2-3X speedups when using SSE4.2. For CSS web-
page layout, we see 2-6X speedups and 2-8X perfor-

7 2012/2/1

ax

Oall MAX nodes M alternating MIN/MAX nodes O uniformly distributed MIN/MAX nodes

3x

Speedup
N
x

0x
BSV BSM

B = breadth first, S = structure splitting, M = map clustering,

2.0 22
1,01,01,0 0809 1.0 0.9 0.8
1x m 0.50. o_5o_i O.Go.i:| ;

BSMH

BSMHV BSR BSRH
R =reduce clustering, H = hoisting, V = SSE 4.2

BSRHV

Figure 5: Map and combined map+reduce speedup over a breadth-first traversal on a 12 level tree. Error bars show 95%
confidence of standard error over 40 cold-cache trials. Run with GCC 4.5.3 (-msse4.2 -O3) on a 2.6GHz Intel Core i7.

mance/Watt increases by using SSE4.2. Finally, target-
ing AVX, our binary search algorithm is 5.5X faster
than FAST [16], the previously fastest algorithm, and
has a 6.9X performance/Watt increase over it. !

4.1 Map and reduce microbenchmarks

Figure 5 shows 2-3X speedups for the MIN/MAX com-
putation of Section 2.3 on a binary tree by manually in-
serting a clustering step and clustering the loops. Recall
that a node’s type determines whether to run a min or
max operation, suggesting the map pattern. Likewise,
there are few children per node, suggesting the reduce
pattern. Both sequential and SIMD speedups depend on
the distribution of MIN and MAX nodes.

Clustering improves sequential performance. As
expected, the map pattern (B S M vs. B S) improves
speedup for a random distribution of MIN/MAX nodes.
Sequential performance slows down on regular trees
(all-MAX nodes and alternating MIN/MAX nodes):
clustering incurs the cost of irregular data accesses and
cannot improve upon already predictable branching.

Similar reasoning applies to the reduce pattern (B S
R) for regular trees. The recursive clustering of reduc-
tions is ineffective on random trees, however: a random
distribution prevents large multi-level clusters.

Finally, hoisting the conditional out of each cluster
(B SM H and B S R H) also improves speedup.

Clustered vectorization has the largest speedup.
For regular trees, the reduce pattern yields a 2X speedup
and strong scaling is 3.5X out of the ideal 4X (SSE4.2).

"We measure performance/Watt by reading energy performance
counters after running as many trials as possible over 1 second.

Clustered data parallelism

25ms o
+20ms 0 §
: 3. 1x,——= 25x28X31X32X30X38X @
mlSmS - " - @
£) 6Xx
E10ms | 2.5x3° 20X21x23x23x22x26x

el 1 1N T P Y
oms I AN A [I I A EI I=0A0KA
NI SRR [
Q N O o . O <
& T TFEE S &&V
(¢ & & =
N BFS T clustered SIMD

[Cdata relayout
—relayout + 5 passes

= =1 pass (no relayout)
* relayout + 1 pass

Figure 7: Impact of data relayout time on total CSS
speedup. Bars depict layout pass times. Speedup lines show
the impact of including clustering preprocessing time.

g 10x
S 8
E éx EEEEEEEEEI ED:I:D:D:D
o Ox
§ map clustering map clustering +
£ SSE4.2
€ apple O craigslist O flickr
o msdn O twitter O wikipedia
O wordpress O youtube OAVERAGE

Figure 8: Performance/Watt increase for clustered web-
page layout.

8 2012/2/1

7.0x Dapple
6.0x O craigslist
a 5.0x DﬂICkr
B 4.0x O msdn
9 3.0x O twitter
é 2.0x m:m:ﬂ] |:|:|:|:m:|] I ' I O wikipedia
1.0x Owordpress
0.0x D:IIIID] DIDID] Ovyoutube
MSH MSHV RSH RSHYV B AVERAGE

breadth first, S = structure splitting, M = map clustering,

B =

R = reduce clustering, H = hoisting, V = SSE 4.2

Figure 6: Speedups from clustering on webpage layout. Run on a 2.66GHz Intel Core i7 (GCC 4.5.3 with flags

—03 —combine —msse4.2) and does not preprocessing time.

4.2 CSS webpage layout case study

We manually rewrote part of a webpage layout en-
gine for 2-6X speedups and 2-8X performance/Watt in-
creases. We found optimizing the compression ratio to
be important. Finally, a significant 2.0-2.5X speedup
was from sequential clustering optimizations.
Webpage layout is a sequence of tree traversals.
A node visit will dispatch based on node type, such
as paragraph or list, and branch on style fields, such
as having a margin. This suggests the map pattern.
Node values are also often a function of nearby nodes,
such as the height being the sum of children heights.
This suggests the reduce pattern. We report results
from rewriting the widths traversal of the C3 web
browser [18] and running popular pages (YouTube,
WordPress, Wikipedia, Twitter, Flickr, Craigslist, etc.).

Clustering improves sequential performance. Ap-
plying map clustering (M H) yields an average 2.3X
speedup because of branch prediction and hoisting. The
recursive clustering (R S H) also yields up to 3.9X se-
quential speedups due to ordered child data accesses,
but only when the compression ratio is high.

Clustering enables vectorization. Without it, we
saw no SIMD speedups. Map vectorization (M S H
V) gives across-the-board speedups with an average
of 3.5X. Vectorization more than compensates for the
sequential slowdown of structure splitting (M S H).

The map pattern clustering outperforms the reduce
pattern clustering. Our intuition is two-fold. First, most
of the computation of a node is typically not spent
reducing, giving only a marginal benefit to clustered
evaluation (7}.) under the reduce pattern. Second, the
reduce pattern has a much worse compression ratio

Clustered data parallelism

(r = 40%) than the map pattern (r = 12%), which
clusters a level independently of other levels.

We experimented with which fields to cluster on for
the map pattern. At first, we used a system-provided ID
that already canonicalized many style attributes for a
node, but then we switched to inspecting actual field
values. Our compression ratio dropped from 78% to
12%, which correspondingly improved speedup.

Clustering time lowers speedup. Including clus-
tering time for one traversal drops speedup to 2.6x.
The cost can be amortized across multiple subsequent
traversals; we estimate a 3.4x speedup for five passses.
Optimizing the clusterer would also lead to speedups.

4.3 Binary search case study

We implemented our binary search algorithm using
AVXintrinsics. Beyond the scope of this paper, we also
achieved speedups for a similar case study of vectoriz-
ing the decision diagrams in a “web-scale” recommen-
dation system by again clustering hot paths.

The performance of our binary search algorithm de-
pends on the speculation hit rate. When the hit rate is
over 40%, our algorithm is faster than FAST [16], the
previously fastest algorithm. For perfect speculations,
speedup is 5.5X over FAST with a performance/Watt
increase of 6.9X.

We compare our algorithm to our best-effort reim-
plementation of the on-chip optimizations of FAST [16].
Both algorithms are speculative: they perform work
that might not be needed in a sequential search. Our
version is optimistic. Correct speculations follow a
depth first traversal, while misspeculations must back-
track. In contrast, FAST is eager: it explores both
branches from unrolling a loop iteration. FAST suf-
fers from an exponential blowup when repeatedly un-

9 2012/2/1

optimistic (AVX)
optimistic (SSE)
optimistic (cache line blocking) ™
optimistic (sequential preorder)
eager (AVYX) [m— 1'95.9)(

eager (SSE) ™= 1:35.2x
eager (cache line blocking) ‘_1 ,01'7"2 9
eager (sequential breadth-first) ™= 1o

Ox 2Xx 4x 6x 8x

13.1x
: 15.8x

¢ 12.2x

B performance/Watt increase

speedup

10x 12x 14x 16x 18x

performance increase

Figure 9: Binary search performance under perfect speculation. Baseline is sequential search on a breadth-first layout.

32.0x
16.0x
8.0x
4.0x
2.0x
1.0x

Speedup

100% 75% 50% 25%
Speculation hit rate for clusters of 8

—ideal (AVX)
““““ ideal (SSE)
= optimistic (AVX)
==-optimistic (SSE)
= optimistic (cacheline blocking)
eager (AVX)
eager (cacheline blocking)

Figure 10: Speedup for clustered binary search as a function of the speculation hit rate.

rolling, preventing strong scaling. The degenerate case
of a vector length of 1 causes FAST to be the tradi-
tional binary search over a breadth-first layout and for
our algorithm to be the same over a preorder layout.

We run both algorithms using the Intel C++ Com-
piler 12.1 with flags —std=c++0x —mavx —O3 on a 3.3
GHz Intel Core i7. We are interested in just CPU opti-
mization, so we run on depth 17 trees.

Clustering improves sequential performance. Un-
der perfect speculation (Figure 9), our sequential algo-
rithm outperforms vectorized FAST by 1.4X.

Clustering improves vectorization. We see 2.5X
and 1.3X relative speedups from adding SSE and AVX
instructions. The corresponding relative improvement
in performance/Watt is 2.0X and 2.6X. In total, we im-
prove speedup over AVX FAST by 5.5X and perfor-
mance/Watt by 6.9X.

Figure 10 shows the impact of misspeculation in
terms of the likeliness of predicting 8 consective val-
ues. SSE instructions only require 4 consecutive pre-
dictions, so there should be a cross-over point at which

Clustered data parallelism

SSE evaluation outperforms AVX. Based on our se-
quential performance, we expect the cross-over point to
be at a 78% hit rate, but we actually observe it at 92%.
Finally, we note that the cross-over point for switching
to FAST is around 40%.

5. Related work

Loop transformations for vectorization are well-known [1,
3, 28]. CDP enables vectorization when the full loop
cannot be vectorized. The closest techniques we build
upon are for transforming data layouts for locality and
for vectorizing nested data parallel programs.

5.1 Data layout optimizations

Chilimbi et al. [10] organize a tree in memory to better
exploit caches. Given a fixed access pattern, they collo-
cate data, meaning data is placed to improve locality by
match spatial and temporal access patterns. Irigoin and
Triolet [13], Frigo et al. [12], Ding and Kennedy [11],
and Jo and Kulkarni [14] do as well, but further opti-
mize the data access order, and target different sized
caches. Our focus is instead on vectorization.

10 2012/2/1

Similar to CDP’s recursive use of striding for tree
reductions, Nuzman et al. [24] apply data layout trans-
formations to vectorization. Many such optimizations
are known, e.g., structure conversion. We show how to
target the map, reduce and graph traversal patterns.

5.2 Tree Pattern Optimizations

Designing vector algorithms is difficult. Indicative of
this challenge, Barnes [4] provides an early algorithm
in a paper titled “A modified tree code: Don’t laugh; It
runs”. He targets a pattern not examined in this paper:
concurrent queries in an all-to-all n-body simulation.
Likewise, our binary search baseline is the manually
implemented vector search by Kim et al. [16].

Matsuzaki et al. [19] study parallel tree reductions.
Despite presenting an implementation, they do not re-
port any speedups. Matsuzaki et al. [20] further discuss
rose trees, finding data parallelism is effective for large
trees over multiple processors. Our map, reduce, and
traversal patterns can likewise be thought of as skele-
tons (operations on abstract types). We show similar
speedups to their reduce example but on smaller trees
and only using one single-core processor.

Notably, Chatterjee et al. [9] vectorize nested reduc-
tions by using scan primitives. CDP was motivated by
the insufficiency of such nested data parallel algorithms
for our case studies.

Our CSS case study is inspired by Meyerovich et
al. [22]. They show that webpage layout is data parallel
over a tree, but only explore MIMD optimization.

5.3 Language support

Many languages and frameworks automate vectoriza-
tion. Automation is a natural next step for our algo-
rithms and these systems feature relevant support for
irregular computations.

Reps proposes vectorizing tree reductions with scan
grammars [27]. Blelloch’s NESL [6] achieves vector-
ization of structures with a bounded depth. Keller et al.
generalize NESL to recursive types (e.g., trees of arbi-
trary depth) [15], which Data Parallel Haskell [26] em-
ploys. Unfortunately, the irregularity challenging scan
grammars — nodes of different types — has not been ad-
dressed until our work. Traversals and unbalanced re-
duce are also unaddressed.

Data dependencies are visible to just-in-time com-
pilers. Systems such as Copperhead [7], SEJITS spe-
cializers [8], and Intel Array Building Blocks [23] vec-
torize at runtime in order to exploit such statically un-

Clustered data parallelism

available knowledge. These techniques might be used
to deploy our patterns.

Recently, Zhang et al. [29] showed that permuting
arrays improves memory access patterns for irregular
GPU programs. Our work is in a similar spirit, though
our patterns focus more on data-dependent access pat-
terns and control.

6. Conclusion

We have shown concrete vector algorithms for web-
page layout and binary search, achieving a 4.1x and
4.9x over already optimized implementations.

We achieved these results by targeting their use of
CDP patterns. In particular, we showed how to vec-
torize maps when there is branching, reductions when
there are few elements per reduction, traversals when
there is uncertainty about the traversal, and even com-
binations of these patterns. Our insight is that, instead
of vectorizing an entire loop, we find clusters that are
more amenable to optimization. Clustering is not a
black art: we drew inspiration for our clusterings from
data layout optimizations that targeted locality.

We believe clustering exposes new opportunities.
Our binary search results suggest that there are oppor-
tunities in vectorizing basic algorithms. Larger pro-
grams may benefit as well: we are implementing a
compiler support that applies our patterns as loop trans-
formations. Finally, our evaluation is on restrictive
subword-SIMD architectures, so we believe even better
performance is possible on more relaxed SIMD archi-
tectures [17]. Considering our results, we believe there
is significant future potential.

Acknowledgments

Herman Venter, Wolfram Schulte, Rastislav Bodik,
Jim Larus, Andrew Gearhart, Lubomir Litchev, Bryan
Catanzaro, Christopher Batten, Krste Asanavic, Dan
Grossman, Nikolai Tillmann, and anonymous review-
ers provided valuable guidance through various phases
of this project.

Research supported by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching
funding by U.C. Discovery (Award #DIG07-10227).
Additional support comes from Par Lab affiliates Na-
tional Instruments, Nokia, NVIDIA, Oracle, and Sam-
sung. This material is based upon work supported by
the National Science Foundation Graduate Research
Fellowship.

11 2012/2/1

References

[1] Randy Allen and Ken Kennedy. Automatic translation of
Fortran programs to vector form. TOPLAS, 1987.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, E. Lee, N. Morgan, G. Necula, D. Patterson,
et al. The Parallel Computing Laboratory at UC Berkeley: A
research agenda based on the Berkeley view. EECS Depart-
ment, University of California, Berkeley, Tech. Rep, 2008.

[3] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Com-
piler transformations for high-performance computing. ACM
Computing Surveys.

[4] Joshua E. Barnes. A modified tree code: don’t laugh; it runs.
Journal of Computational Physics, 1990.

[5] R. Bayer and E.M. McCreight. Organization and maintenance
of large ordered indexes. Acta informatica, 1972.

[6] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hard-
wick, Jay Sipelstein, and Marco Zagha. Implementation of
a portable nested data-parallel language. Journal of Parallel
and Distributed Computing, 1994.

[7] Bryan C. Catanzaro, Michael Garland, and Kurt Keutzer. Cop-
perhead: compiling an embedded data parallel language. In
PPOPP, 2011.

[8] Kamil Shoaib Lee Y. Asanovic K. Demmel J. Keutzer K.
Shalf J. Yelick K. Catanzaro, B. and Fox A. SEJITS: Getting
productivity and performance with selective embedded JIT
specialization. In First Workshop on Programmable Models
for Emerging Architecture, 2009.

[9] S. Chatterjee, G.E. Blelloch, and M. Zagha. Scan primitives
for vector computers. 1990.

[10] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus.
Cache-conscious structure layout. In PLDI, 1999.

[11] Chen Ding and Ken Kennedy. Improving cache performance
in dynamic applications through data and computation reor-
ganization at run time. In PLDI, 1999.

[12] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Srid-
har Ramachandran. Cache-oblivious algorithms. 1999.

[13] F. Irigoin and R. Triolet. Supernode partitioning. In POPL,
1988.

[14] Youngjoon Jo and Milind Kulkarni. Enhancing locality for
recursive traversals of recursive structures. In OOPSLA, 2011.

[15] Gabriele Keller and Manuel M. T. Chakravarty. Flattening
trees. In Euro-Par, 1998.

[16] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar,
Anthony D. Nguyen, Tim Kaldewey, Victor W. Lee, Scott A.
Brandt, and Pradeep Dubey. FAST: fast architecture sensitive
tree search on modern CPUs and GPUs. In SIGMOD, 2010.

[17] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Bat-
ten, and K. Asanovic. Exploring the tradeoffs between pro-
grammability and efficiency in data-parallel accelerators. In
ISCA, 2011.

[18] Benjamin S. Lerner, Brian Burg, Herman Venter, and Wol-
fram Schulte. C3: an experimental, extensible, reconfigurable
platform for HTML-based applications. In WebApps, 2011.

Clustered data parallelism

[19] Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi. To-
wards automatic parallelization of tree reductions in dynamic
programming. In SPAA, 2006.

[20] Kiminori Matsuzaki, Zhenjiang Hu, and Masato Takeichi.
Parallel skeletons for manipulating general trees. Parallel
Computing, 2006.

[21] T. Mattson, B. Sanders, and B. Massingill. Patterns for paral-
lel programming. Addison-Wesley Professional, 2004.

[22] Leo A. Meyerovich and Rastislav Bodik. Fast and parallel
webpage layout. In WWW, 2010.

[23] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael D.
McCool, Anwar M. Ghuloum, Stefanus Du Toit, Zhi-Gang
Wang, Zhaohui Du, Yongjian Chen, Gansha Wu, Peng Guo,
Zhanglin Liu, and Dan Zhang. Intel’s Array Building Blocks:
A retargetable, dynamic compiler and embedded language. In
CGO, 2011.

[24] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization
of interleaved data for SIMD. In PLDI, 2006.

[25] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet.
Alphasort: A cache-sensitive parallel external sort. In VLDB,
1995.

[26] Simon Peyton Jones. Harnessing the multicores: Nested data
parallelism in Haskell. In APLAS, 2008.

[27] Thomas Reps. Scan grammars: parallel attribute evaluation
via data-parallelism. SPAA, 1993.

[28] J. E. Smith, Greg Faanes, and Rabin Sugumar. Vector instruc-
tion set support for conditional operations. In ISCA, 2000.

[29] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and
Xipeng Shen. On-the-fly elimination of dynamic irregulari-
ties for GPU computing. In ASPLOS, 2011.

12 2012/2/1

1 template<>
2 class Ops<float, _m256, 8> {

. _ . . 3 public:
! ,,m1'28|' two_s B ,mm,set.1 .,ep|32(2), 4 static inline TVec loadPAligned(float xkeys) {
2 for (inti=0; < evenlLen; i+=4) {)
. . . 5 return _mm256_load_ps(keys); }
3 __m128i even4 = _mm_load_si128(even + i); 6 static inline TVec gt(__m256 a, _m256 b) {
4 __m128i sum4 = _mm_add_epi32(twos, evend); ©c g "y .
5 mm_store_si128(result + i, sum4); 7 return .mm256.cmp_ps(a,b,.CMP_GT.OS); }
6} T - ’ ’ 8 static inline int testAllOnes (__m256 m) {
7 ... /v similar for odds / ...](9)) return .mm256.movemask-ps(m) == 235; }
11

12 template<typename T, class V, typename TVec, int VLen>
13 unsigned int searchNDFSIMD_PreorderBTree

14 (PreorderBTree<T, VLen> &tree, T val) {

15 const TVec v = V::set(val); /splat

16 const unsigned int bnodeSize =

17 VLen==17?1:(1 << VLen);

18 const unsigned int fringeLen = 1 << VLen;

19 unsigned int numSubtrees = tree.numBNodes;

20 unsigned inti=0;

21 for (unsigned int bnodesBelow =

Figure 12: Map pattern: vector evaluation of an array of
numbers clustered by even/odd.

22 VLen * ((tree.numLevels — 1) / VLen);

23 bnodesBelow > 0;

24 bnodesBelow —= VLen) {

25 numSubtrees = (numSubtrees — 1)/fringeLen;

26 const TVec span = V::loadPAligned(tree.data + i);

1 for (intli = tree.numLevels — 1;1i > 0; li——) { 27 const TVec cmp = V:gt(span, v):
2 !_evel *Vl = tree.levelfli; 28 const int mask = V::itestAllOnes(cmp);
3 int xval = lvl—>val; 29 if (mask) {
4 int xnextVal = tree.level[li + 1]—>val; 30 i += brodeSize; /hot path
5 for (int clstr = 0; clstr < Ivl—>numClusters; clstr++) { 31 } else { ’
6 intlen = Ivl—>clusterLen[clstr]; 1 unsigned int iStart = i;
7 int numChildren = Ivl—>numChildren[clstr]; 33 int track < O ’
8 if (M—>type[clstr] == MAX_TYPE) { . 34 for (unsignéd intj=VLlen;j>0;j]——) {
9 for (int child = 0; child < numChildren; child++) { 35 track = (track << 1) | (val > tree.datali):
10 for (intn=0;n <len;n+=4) { . | . . o o
. = tree.datali] ? 1 : (1 —1));
11 _m128i v4 = _mm_load_si128(al + n); gg) | += val < tree.datal] (T << 2
12 _-m128i cv4 = _mm_load_si128(nextVal + n); . . .
. . 38 n BN = k;
13 --m128i m4 = _mm_max_epi32(curVal4, childVal4); 39 :Tlsé‘?::i lb;;;:;izeode trac
1151 },mm,store,3|128(val +n, m4); 40 + nextBNode * bnodeSize x numSubtrees;
41
16 val +=len; 2y }
}; }nextVaI +=len; 43 unsigned int IvisLeft = VLen;
- 44 while (tree.data]i] |= val) {
1 do /e simiar for MIN-TYPE </ 45 i+=val < T(tree.datalil) ? 1: (1 << (WisLeft — 1));
} 46 IvisLeft——;
20} AR
48 returni;
49 }

Figure 13: Reduce pattern: recursively clustered vector eval-
uation of a MIN/MAX tree.

Figure 14: Preorder binary search with abstracted vector
instructions.

Clustered data parallelism 13 2012/2/1

O AVERAGE OVER WEBSITES youtube wordpress wikipedia twitter msdn flickr
1| 40%

cluster nested recursive by values : .
: : ‘ 74%
cluster nested by values : : :
—_— 10 | | | |

cluster level by values .
54%
cluster level by id + parent values T
' ' 78%
cluster level by id |
0% 20% 40% 60% 80%

craigslist

100%

compression ratio (|clusters| / |tree|); lower is better

apple

120%

Figure 11: Compression ratio for different CSS clusterings. Bars depict compression ratio (number of clusters over number
of nodes). Recursive clustering is for the reduce pattern, level-only for the map pattern. ID is an identifier set by the C3 browser
for nodes sharing the same style parse information while value is by clustering on actual style field values.

Clustered data parallelism

2012/2/1

