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Abstract

The adoption of data parallel primitives to increase
multicore utilization presents an opportunity for aggres-
sive compiler optimization. We examine computations
over the tree abstract datatype (ADT) in particular.

For better utilization than approaches like flattening,
we argue that transformations should specialize for com-
mon data and computation regularities. For example,
we demonstrate a novel pattern that exploits regularity in
node labeling as a SIMD parallelism opportunity, which
we call SIMTask parallelism. For better applicability, we
argue for better linguistic support of irregularity. For ex-
ample, we show how the future primitive might be used
to tolerate occasional data dependencies in an otherwise
associative computation.

We validate our approach on two tree computations:
RepMin, popular in the functional programming commu-
nity, and intrinsic widths, a stage of webpage layout in a
prototype web browser. We show speedups over tradi-
tional versions of these computations of 124X and 10X,
respectively.

1 Introduction

Many programs run well below peak performance on
modern hardware: there is a utilization gap. [13] We
focus on the common problem of computing over the
tree abstract data type (ADT). A high utilization pro-
gram might exploit data prefetching, wide cache lines,
and SIMD instructions. It is difficult to combine such ar-
chitectural and algorithmic knowledge with domain ex-
pertise so many tree programs have poor utilization.

In this paper, we introduce a vision for high utilization
tree computations through compiler-assisted specializa-
tions. We specialize flattening, the type-directed ap-
proach of NESL and Data Parallel Haskell [4,14,17] that
traditionally uniformly transforms a tree into arrays and
the computation into SIMD (or multicore) instructions.

Our approach is to pick a flattening strategy based on
regularity in the tree datatype and the computation over
it. For example, we demonstrate how to exploit whether
a tree is balanced and the computation over the tree is
associative. Finally, we describe how occasional irreg-
ularities should not preclude optimizations that assume
regularity in the typical case; we describe futures [1] as
one enabling primitive.

To validate our approach, we present two case stud-
ies in SIMD tree algorithms: a functional programming
benchmark and a complicated web browser’s CSS layout
engine. For both studies, we discuss how to use declara-
tive data parallel constructs in order to automate our cur-
rently manual program transformations.

Our conclusion is that with simple declarative con-
structs from the programmer, irregular data structures
like the tree ADT, that do not interact well with features
found in modern hardware, can be automatically trans-
formed into representations that do interact well with fea-
tures found in modern hardware.

In summary, we contribute a vision for specialized
data parallel constructs that better utilize hardware and
still tolerate irregularity. To do so, we also contribute the
first report of implementing a SIMD layout engine and a
novel SIMD tree pattern (SIMTask visitors).

2 An Example: RepMin

We use a simple program, RepMin, throughout this pa-
per to discuss our approach. The RepMin problem is to
replace all values held in the leaves of a tree by the min-
imum value of all the leaves.

RepMin is a two pass algorithm. The first pass is
bottom-up: each leaf passes its value to its parent, which
then compares the min from its left and right child, re-
spectively. This is repeated until the root, which has no
parent, holds the minimum value of the tree. The second
pass is top-down: the minimum value is passed from the



root down to the leaves, at which point the leaf sets its
value to the min.

2.1 Cilk Strawman

Cilk [10] is a popular multicore framework. The spawn
keyword can be used to guide the point of recursive de-
composition; spawn guides multicore utilization. The
following code is a Cilk implementation of RepMin:

c l a s s Node {
enum Type { P a i r , Leaf } ;
Node ∗ l e f t , ∗ r i g h t ;
i n t v a l u e ; Type t y p e ;
i n t FindMin ( ) {

i f ( t y p e == Leaf ) re turn v a l u e ;
i n t a = spawn l e f t −>FindMin ( ) ;
i n t b = r i g h t −>FindMin ( ) ;
re turn min ( a , b ) ;

}
void Propaga teMin ( i n t min ) {

i f ( t y p e == Leaf ) {
v a l u e = min ; re turn ; }

spawn l e f t −>Propaga teMin ( min ) ;
r i g h t −>Propaga teMin ( min ) ;

}
void Repmin ( ) {

i n t min = FindMin ( ) ;
P ropaga teMin ( min ) ;

}
}

Unfortunately, the Cilk version of RepMin on a 4 core
Intel workstation with the Intel XE 2011 compiler is 2.4x
slower than the sequential code.

2.2 Cilk Deconstructed

In the Cilk model, significant irregularity in the task tree
is supported through work stealing, and, to prevent in-
terference (e.g., false sharing), a multicore memory al-
locator. [18] For better utilization, the Cilk programmer
might manually optimize data layout (e.g., squeeze two
tree nodes into a single cache line) and control patterns
(e.g., manage the number of calls to the spawn keyword).
Overall, Cilk uses the decomposition hint to address the
multicore utilization problem and little else.

In contrast, we advocate using data and control decla-
rations to automatically optimize layout and access pat-
terns for caches, SIMD instructions, etc. as well.

3 Compiler Target: Tree Optimizations

We demonstrate the 2 orders of magnitude single-core
speedup for RepMin one can achieve if the toolchain were
able to (i) change the data layout of a tree and (ii) change
the order of tree traversal. Such high-utilization opti-
mizations represent what we believe multicore frame-
works should support; Section 4 examines how we be-
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Figure 1: A balanced tree colored by level.

lieve we can balance productivity with tractability to do
so.

3.1 Optimizing Data Layout

Commodity hardware optimizes regular memory access
patterns better than randomly accessed pointers. Thus,
instead of representing a tree as a randomly-access
pointer-based structure, we use a flat representation of in-
dexed arrays [4]. The regularity of the tree can be further
exploited in picking which flat representation: we com-
pare an encoding that supports an irregular tree against
one specialized for balanced trees.

We stress that our interest is not in the (likely lack of
novelty) in these representations. The importance is the
demonstrably strong performance advantage of increas-
ingly regular encodings (Section 3.3), and, later, how
programmers might automatically use them (Section 4).

Fixed Encoding: With this encoding, we know that the
tree is balanced and has a fixed branching (i.e. 2 nodes
per child). We use a simple breadth-first encoding: if i

is the index of the current node, the left child is at 2i+1
and the right child is at 2i+ 2. For example, here is the
encoding for the first 3 levels of the tree in Figure 1:

index 0 1 2 3 4 5 6

node A B C D E F G

This encoding is desirable because (i) it lays each level
out contiguously in memory which aids SIMD execution
over the array and (ii) if the leaves are the only place
where values are stored, we have to store and often only
iterate over the last “level” of the array.

Variable Encoding: Not all trees have a fixed branch-
ing, so we have a variable encoding that allows for ar-
bitrary children at each node. This encoding contains
two arrays, one that contains the length—or number of
children—for that node, and another that holds the value
of the node. The following encoding is for the first 3
levels of the tree in Figure 1:

index 0 1 2 3 4 5 6

length 0 0 2 0 0 2 2

node D E B F G C A
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The node array assigns indexes into the array via a pos-
torder traversal of the tree. For example, the first node
in a postorder traversal of the tree is node D: D has in-
dex 0 into our arrays. The length of D is 0—D has no
children. Conversely, node A has two children (B and C,
respectively). C is A’s index - 1, while B is the index of
C’s leftmost subchild - 1.

This encoding is desirable because it allows us to deal
with irregular tree organization while at the same time
gives us an efficient representation on which to do a
bottom-up traversal (from left to right over the length ar-
ray) or a top-down traversal (right to left).

3.2 Optimizing Traversal Order

Like data layout, traversal order optimizations benefit
from regularity in trees. In particular, if we can change
the traversal order over the tree, we might exploit SIMD
parallelism. We examine vectorization of large functions
in Section 5; as a basis, we first consider two ways of just
using intrinsic SIMD MAX instructions.

First, we exploit SIMD reduction instructions for the
bottom-up FindMin pass. The minimum value in node D
can be expanded and then vectorized as one instruction:

D = MIN_REDUCTION ( [ H, I , MAXI, MAXI] )

where MAXI is the maximum integer for that platform.
Keller et al [14] automate this transformation.

If the tree is sparse, as in our ongoing example,
the encoding underutilizes vector lanes (i.e., the MAXI
padding). If MAXI is segmented, to fill the lanes, we can
exploit the associativity and commutativity of the mini-
mum operation to combine reductions across a level. For
example, we would instead assign:

DE = MIN_REDUCTION ( [ H, I , J , K] )

Second, we can exploit more efficient SIMD
piecewise-parallel instructions in a novel way. Observe
that the task-parallel decomposition has identical instruc-
tion traces across tasks. Instead of computing the values
of nodes D, E, F and G on four different cores simultane-
ously, we can compute their values on four different lanes
simultaneously, doubling our theoretical utilization:

DEFG = MIN_PCWISE ( [ H, J , L , N] , [ I , K, M, O] )

We describe this novel parallelization strategy as an in-
stance of Same Instruction, Multiple Task parallelism
(SIMTask). We use the term SIMTask as the rela-
tionship of SIMTasks to SIMThreads [16] is analogous
to that of tasks to threads. Unlike static vectoriza-
tion (e.g., implicit vectorization or NESL’s flattening), it
highlights more dynamic scheduling and allocation ap-
proaches (e.g., semi-static in Section 5).

3.3 Evaluation

We obtained significant speedups for RepMin by optimiz-
ing data layout and traversal order (we examine the more
complicated CSS example in Section 5). Our baseline
is the sequential C++ code shown Section 2.1 (so without
spawn). We built 30 trees each with a height of 23 levels.
We set the values at the leaves to random values.

The following table illustrates two cases: the speedup
due to flattening (fixed and variable encodings) and the
speedup of using SIMD operations on the flattened tree.

Speedup Sequential SIMD

Fixed 52x 124x
Variable 43x 112x

We see large speedups over the sequential code using
flattening. This is due to the hardware being able to
extract regularity from the tree traversal over an ar-
ray, as opposed to a traversal with child pointers (bet-
ter prefetching, branch prediction, etc.). We see about a
124x speedup by using SIMD registers to calculate the
min operation 4 values at a time. Our SIMD code does
not achieve the idealized 4x speedup over the flattened
code due to branching effects and other irregularities we
have to contend with in the SSE 4.2 SIMD operations.

4 Programming Models

In the previous section, we demonstrated backend op-
timizations on data layout and traversal order we would
like to automate. In this section, we discuss frontend pro-
gramming models that expose enough information such
that a compiler do so. Throughout the following exam-
ples, we see a pattern of exposing exploitable regularity
through declarative constructs and supporting productiv-
ity by automatically handling irregularities.

4.1 Data Parallel Tree Map and Reduce

Dean et al.’s MapReduce [8] popular data parallel model
highlights the adoptibility of map and fold functions.
Applying the generalization noted by Fokkinga et al. [9]
generalizes such functions to catamorphisms, we now
explore map and fold functions over trees.

We consider tree reductions first. Tree reduce takes
two arguments: an operator to apply to the values from
left and right child nodes, and a default value which is
used as the start of the reduction. For example, the first,
bottom-up pass in RepMin could be written in C# as so:

i n t min = t r e e . Reduce ( Math . Min , i n t . MaxValue ) ;

A toolchain should know Math.Min is associative and
commutative (e.g. the programmer annotates it as such),
so the toolchain can infer that it can traverse the tree in
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any order. Because the programmer did not specify the
physical representation of the tree, the runtime system
can flatten it tree into an array and put the nodes in a level
of tree next to each other, allowing SIMD parallelism.

The second pass in RepMin is a top-down pass and
could be written using a destructive version of Map:

t r e e . Map( Leaf l e a f => { l e a f . S e t V a l ue ( min ) ; } ) ;

Again, the programmer does not specify the physical rep-
resentation nor the traversal order. If the runtime system
can infer that the delegate is associative and commuta-
tive (e.g., through another programmer-provided annota-
tions), this too can be a SIMD operation.

In summary, MapReduce-style programmers are capa-
ble of describing computation regularity (e.g., associativ-
ity) relevant to SIMD utilization while the runtime can
automatically handle data irregularity (e.g., tree layout).

4.2 SIMTask Visitors

In Section 3.2, we saw a piecewise-SIMD computation
of the minimum values of RepMin using a task-parallel
(SIMTask) decomposition. Unlike typical task paral-
lelism, we require the instructions of any tasks that are
to be run in SIMD fashion together to have mostly con-
vergent instruction sequences. I.e., be the same type of
task. We now demonstrate basic programming constructs
to help scale SIMTasks from a simple RepMin-style re-
duction to larger and more irregular programs typically
thought of being, at best, task parallel.

First, we consider supporting instruction divergence in
a slightly less regular computation. The visitor pattern
is common in programs like compilers, and, as we will
see, in web browsers (Section 5). Instead of performing
the same task for every node, there are different types of
nodes and a different task for every type of node. Below,
we rewrite RepMin as a visitor with a fixed bottom-up
traversal pattern specialized to binary trees that commu-
nicate integers between levels:

c l a s s FindMin : P a r a l l e l B o t t om U p < i n t > {
p u b l i c o v e r r i d e i n t v i s i t ( Node n ) {

re turn Math . Min ( r e s L e f t , r e s R i g h t ) ;
}
p u b l i c o v e r r i d e i n t v i s i t ( Leaf n ) {

re turn n . Value ;
. . .

To handle the instruction divergence of different tasks,
visit(Node n) SIMTasks should run together with other
visit(Node n) SIMTasks, and the same for visit(Leaf n).
Just as a developer relies upon type dispatch to call the
appropriate FindMin function on a node, so should she
rely upon a SIMTask Visitor framework to batch SIM-
Tasks together and run them using SIMD instructions.

SIMTasks demonstrate another case of exposing and
exploiting data and computation regularity.

4.3 SIMTask Futures

Finally, we consider occasional (computational) irregu-
larities in the task dependency graph. We might change
Node.FindMin() to very rarely inspect the value of a sib-
ling, not just its children:

re turn random ( ) == 100 ?
p a r e n t . r i g h t . v a l u e :
Math . Min ( r e s L e f t , r e s R i g h t ) ;

Relying strictly upon an upwards traversal is incorrect:
the right value may not be available at time of evalua-
tion. To efficiently but cleanly support such irregularity,
programmers use futures [1] to reference a value before
it is available. Evaluation speculatively occurs in an up-
wards fashion, as is most efficient and as suggested by
the programmer. However, if the value is not available
at the time of reference, the runtime will compute or at
least wait for the required value and only then continue.
Our interest in such a problem is motivated by our exam-
ination of SIMD parallelism in a browser (Section 5).

Futures for SIMTasks represent exposing and auto-
matically handling computation irregularity.

5 A Real Example: CSS

In order to demonstrate our approach is applicable to
real-world problems more complicated than RepMin, we
applied data parallel programming to the CSS layout en-
gine of an HTML5 platform.

The layout engine employs a visitor pattern over the
input tree – a webpage. Due to the low-level nature of
modern SIMD tools, we considered one pass that cal-
culates the widths of elements on the page. We manu-
ally rewrote each visit function for that pass as a sym-
bolic (SIMD-unfriendly) operation followed by a SIM-
Task (SIMD-friendly) operation. After parsing, we flat-
ten the tree into an array-backed structure, using a vari-
ant of the variable indexing scheme discussed in Sec-
tion 3.1 for prefix trees. We then use the Intel R© vector-
izing compiler to extract SIMD parallelism from running
a loop over simultaneous SIMTask visits.

We investigate the speedup from (i) flattening the
pointer-based tree into an array and (ii) applying SIMD
operations to the flattened representation. For all bench-
mark results, we use a baseline that has a pointer-based
tree with manually specified visitors. All experiments are
of an Intel Core i7 (620M, MacBook Pro) on Craigslist,
MSDN, Wikipedia, and Twitter content pages. Speedup
results are for calls that run multiple nodes together.

For tree nodes matching nearby node, we found that
flattening the tree provided a 3.8x speedup over the
explicit pointer based representation. Note that this
speedup also includes memoization of calls to the sym-
bolic visit operations by exploiting the associativity of
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visits and peculiarities of the operation. When we used
the vectorizing compiler, we saw a 4.9x speedup over the
normal pointer-based formulation.

We should note two further outcomes: first, we did see
a slowdown when we could only used a single lane of the
SIMD registers (e.g., the above 4.9x speedup is when we
were able to use two lanes of the SIMD registers). Sec-
ond, less than half of the SIMTask code was vectorizable
via the Intel compiler due to data dependencies it was not
able analyze. These issues require further investigation.

Our experience reveals that despite our significant
speedup numbers, there are many challenges to getting
data parallel models for large irregular computations to
exploit modern hardware. At the same time, it shows
that they are worth investigating.

6 Related Work

We build upon and attempt to integrate a variety of work:
Manual optimization: Indicative of the challenge of

manual approaches is an early paper manually vector-
izing a Barnes-Hut n-body simulation [2], titled "Don’t
laugh, it runs!". As seen with FAST [15], tree compu-
tations are still a challenge. There are a variety of indi-
vidual algorithms, e.g., jump pointers [19]. We want to
automate such optimizations.

Parallelism through Control Abstraction. Skele-
tons are frameworks parametrized by user-supplied func-
tions. Skeletons typically ignore knowledge about the
functions, wasting algorithmic opportunities. Stencils, in
contrast, are applied at design time when a designer be-
lieves the regularity of the problem matches the stencil.
Stencils do not tolerate irregularity. We want to match
the generic nature of skeletons with the performance of
stencils. Task parallel systems such as Cilk [10] and
MapReduce [8] tolerate irregularity, but limit the scope
of their optimizations: we want the best of both worlds.
Gibbon [12] demonstrates linguistic progress in ab-
stracting over both data and computation, which might
be applied to parallel patterns.

Datatype-Directed Parallelism. Blelloch [4]’s NESL
language demonstrates one transformation for lifting ar-
bitrary computations over bounded nested vectors (e.g.,
matrices) to use vector instructions. As extensions,
Keller et al. [14, 17] support recursive types (e.g., trees)
and target multiple cores and GPUs [3, 7]. Catanzaro
et al. [5] presents an alternate transformation in Cop-
perhead of computations over various forms of bounded
nested vectors that targets GPUs: the transformation
should specialize for data structure and hardware. We
further advocate specializing for computation structure.

Optimizing DSLs. Systems like Matlab R© special-
ize for particular data structures and computations over
them (e.g., sparse matrices). In contrast, Data Parallel

Haskell [17] employs a generic flattening transformation
to uniformly vectorize a variety of abstract data types.
We desire a mixture: declarative constructs in the style
of DPH, but, instead of just one transformation, support
many (e.g., our algorithms for sparse trees).

SIMThreads and GPU DSLs. The relationship of
SIMTasks to SIMThreads [16] is similar to that of tasks
to threads. CUDA and the related OpenCL language that
target GPUs are still best thought of as SIMThread lan-
guages with optimized parallel looping constructs. Ct
and Intel’s ArrBB [18] are making noteworthy progress,
slowly raising the abstraction level to approach SIM-
Tasks.

Managed language optimization. Gal et al’s trace-
based just-in-time compilation (TJIT) [11] not only elim-
inate useless instructions but might also expose regular-
ity useful for hardware. Fox et al’s approach of selective
just-in-time specialization (SEIJITS) [6], which has been
used to compile stencils at runtime, is a strong first step.

7 Conclusions

The computing industry is facing a utilization gap for
which we believe the adoption of data parallel multicore
frameworks presents an opportunity. By specializing for
regularities in data structures, data parallel languages can
support high utilization. For example, we show that flat-
tening a tree can speedup RepMin by 40 to 50x depend-
ing on regularity and SIMD vectorization achieves a total
124x speedup.

Scaling to larger software is difficult; a modern vector-
izing compiler supports about half our rewritten layout
engine visitors. However, we do see potential: flatten-
ing achieves up to a 3.8x speedup and we achieve up to
a 4.9x total speedup (2.3x average SIMD speedup). To
increase applicability, we propose using constructs such
as futures to tolerate occasional irregularities.

Overall, our experience provides motivation for our vi-
sion: a declarative approach to programming irregular
computations allows (i) a programmer to focus on solv-
ing her problem and (ii) significant opportunities for a
toolchain to extract regularity from her code and exploit
it.
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