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Abstract
Why do some programming languages fail and others suc-
ceed? What does the answer tell us about programming lan-
guage design, implementation, and principles? To help an-
swer these and other questions, we argue for examining the
sociological groundings of programming language theory:
socio-PLT.

Researchers in the social sciences have studied adoption
in many contexts. We show how their findings are applicable
to programming language design. For example, many pro-
gramming language features provide benefits that program-
mers cannot directly or immediately observe and therefore
may not find compelling. From clean water to safe sex, the
health community has repeatedly identified and surmounted
similar observability barriers. We use such results from out-
side of programming language theory to frame a research
agenda that should help us understand the social founda-
tions of languages. Finally, we examine implications of our
approach, such as for the design space of language features
and the assessment of scientific research into programming
languages.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: general

General Terms Languages, Human Factors

Keywords history, sociology, programming language adop-
tion

1. Introduction
One goal of programming language research is to improve
software. Achieving this usually means having research
ideas, in some form, eventually adopted by programmers.
Adoption, however, is a serious challenge. This paper exam-
ines how we can leverage scientific insight and methodolo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2012, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1562-3/12/10. . . $10.00

gies from studies of group behavior (particularly in sociol-
ogy) to address a fundamental gap in programming language
research and practice.

In this paper, we use “adoption” to refer to two related
processes. Feature adoption is the process of language de-
signers trying, using, modifying, and spreading a program-
ming language feature. Language adoption is the parallel
process by which programmers take up a programming lan-
guage. Both forms of adoption are possible avenues for im-
provement.

Today, conducting research that is successfully adopted is
a matter of art, not of reliable procedure — and perhaps more
happenstance than art. Language designers sometimes share
their thoughts about the design process they went through
and about the process by which their languages have become
adopted as relevant contributions [34, 36, 53]. However,
scientific principles are lacking. Adoption should not be
analyzed as just an eventual marketing barrier but also, for
example, the process of exploiting social learning to improve
an innovation (Section 3.4). This paper outlines an agenda
for putting more science into the design process.

Our work focuses on the sociological foundations of lan-
guage and feature adoption. In contrast, we do not examine
intrinsic properties such as the precise mathematical benefits
of a new lambda calculus. We are more concerned in whether
outside interests led to the examination of the lambda calcu-
lus derivative and how that derivative might then evolve to
be relevant outside of the academic community [53]. Like-
wise, we do not examine whether individuals find the syntax
of one language more cognitively or psychologically conso-
nant than another [62] but ask if the spread of a semantic
feature is being impeded by an orthogonal one such as syn-
tax [34]. Rather than understanding the psychological pro-
cesses of individual programmers, we want to understand
the social aspects of programming languages.

This paper makes three main contributions.

1. We explain why understanding and exploiting adop-
tion ought to be more of a scientific priority for the
programming language community. As part of this, we
survey hard-won lessons, unsubstantiated beliefs, and re-
curring questions in the language community (Section 2).



2. We show that scientifically grounded social theories
are available for understanding and inducing adop-
tion (Section 3) yet are not known to the programming
language community (Section 2). To do so, we draw upon
a wide body of social sciences and, to help future investi-
gation, identify them. For example, safe sex advocacy re-
search might teach the Haskell community how to better
persuade programmers to use an advanced type system.

3. We present a research agenda for investigating and
exploiting language adoption (Section 4). The agenda
includes a specific set of questions and hypotheses (Sec-
tions 2 – 4) and new language features whose value di-
rectly derives from adoption (Section 4.3).

Our paper is loosely structured around the three points
above, with a section centered on each one.

Beyond the present work, we are performing qualitative
and quantitative analysis of programming language adoption
as well as using these notions in the design of our own sys-
tems – we are practicing what we are preaching. The focus
here, however, is to present the underlying social theories
and subsequent style of analytic reasoning that led to our re-
search program.

Focusing on social adoption issues is timely for sev-
eral reasons. First, the increased prominence of domain-
specific languages and software crises in security, paral-
lelism, and mobile have reinvigorated language demands
throughout computing. Furthermore, sociology and allied
social sciences have undergone a quantitative revolution that
has yielded transferable principles and methodologies. Fi-
nally, languages and programs are increasingly developed
by open community-based processes, so the activities of de-
signers and programmers are increasingly accessible to re-
searchers. The need is old, but we now have the tools and
data to address it.

The purpose of this paper is to bring together research
not previously known to the programming language commu-
nity and to analyze its implications. We raise more questions
than we answer. These questions are marked out in num-
bered boxes, divided into open-ended questions and falsifi-
able hypotheses. Many of them can be examined with basic
empirical techniques that are typical of the social sciences.
Answering other questions may require new research tech-
niques.

2. Hard-won experiences
This section describes some of the past successes and fail-
ures of the programming language research community in
getting its techniques adopted. Along the way, we will point
out some of the hard-won insights of a half-century of expe-
rience. These insights, however, are only part of the story. A
major lesson we derive from the review is that the commu-
nity does not have a complete nor adequate understanding of
the adoption process.

2.1 Grand Ambitions to Incremental Advances
We begin at the high level, discussing the role of researchers
in language design. Sometimes, researchers have committed
themselves to ambitious standardization efforts and indus-
trial collaborations. At other times, researchers have offered
radical new language designs. The underlying philosophy in
both cases is that research can reshape practice. We see that
it occasionally does – but only rarely by building languages
for direct adoption.

Design by committee. Committees of experts (includ-
ing language researchers) have repeatedly tried to design
general-purpose programming languages. These efforts have
routinely resulted in high-profile and costly failures. PL/1
and Algol-68 are roughly contemporaneous examples of this
tendency. Ada is a more recent one. In each case, the result
was a complex design that was hard to implement and widely
disliked [34].

The language designers made several methodological
missteps. Perhaps the most serious was to attempt to pla-
cate all users, based on an incomplete understanding of their
needs (Section 3.4), rather than having a substantive dia-
logue with users to understand their priorities. Another was
to not have precise end goals (Section 3.3).

Committees sometimes produce good designs – indeed,
the designs of Algol-60 and Haskell are routinely lauded.
The correct lesson to draw is that design committees have
risks associated with them. These risks are widely known in
other fields and programming language designers rediscover
them at their own cost.

Whole-cloth radical design. Language researchers of-
ten produce radically new designs for general-purpose lan-
guages. For instance, in 1978, John Backus called for a
point-free functional style [7]. Point-free programming, to-
day, is still not well known outside of the academic commu-
nity. Likewise, the Prolog vision of declarative programming
has still not become a dominant paradigm. Even when a rad-
ical design is adopted, such as dataflow languages for com-
posing electronic music [51], it may be significantly evolved
and specialized. Whole-cloth designs are opportunties for
substantial improvements, but the convoluted paths of ulti-
mately successful approaches suggest that extrinsic factors
are influential.

Engineering language designs. Others have offered a
contrasting vision of the language design process. In 1973,
C. A. R. Hoare advised that a language designer should
“have excellent judgment in choosing the best” features, but
should not “include untried ideas of his own. His task is con-
solidation, not innovation [35].” The role of designing prac-
tical languages and of experimenting with language features
ought to be separate, presumably with the programming lan-
guage research community focusing on the latter.

Hoare’s advice confronts researchers with a dilemma.
How are we to conduct a representative trial of a new lan-
guage feature without incorporating it into a reasonably us-



able tool and having normal users attempt to use it? As ar-
gued by Markstrum [50], having the inventor of a feature
try it out and then argue persuasively for it is a poor substi-
tute for empirical evidence. In 1973, conducting a qualitative
and quantitative analysis of how a language feature is used
would have been very challenging. Today, however, we can
access large repositories of source code and easily commu-
nicate with their developers. This is just one way to substi-
tute systematic study — scientific research — for “excellent
judgment.”

In practice, the original designers of today’s popular lan-
guages are typically not experienced in programming lan-
guage design. Rather, Proebsting [65] noted that a common
pattern is for programmers with expertise in other domains
to create a language when they perceive an unmet need. Den-
nis Ritchie (C), Guido van Rossum (Python), Larry Wall
(Perl), James Gosling (Java), and Rasmus Lerdorf (PHP)
are all examples of this pattern. If the pattern continues to
hold, the programming language community should go be-
yond directly justifying the importance of particular fea-
tures to programmers [37]. We should better consult with
the wider software development community to see what is
relevant [53, 82] and much more effectively transfer our re-
sults to new language designers, who will usually come from
outside of our community (Section 3.3).

2.2 The Road to Functional Programming
The evolution of functional languages provides a case study
into socio-technical aspects of language adoption. We find
that leaders of the functional programming movement are
and have been actively enmeshed in adoption issues. They
have consistently made adoption an explicit goal and guided
their efforts by their (occasionally flawed) understanding of
it.

2.2.1 Continuations
Continuations illustrate a 50 year long feedback loop be-
tween theory and practice. Algol 60’s construct for jump-
ing out of blocks begins Reynolds’s [67] history of con-
tinuations. Implementing goto was simple, akin to imple-
menting continuations, but formally reasoning about it chal-
lenged academia. Early on, van Wijngaarden [79] showed
how to reduce the construct away by what is now known as
the continuation-passing style (CPS) transformation. At least
one direct practical result is famous: Dijkstra’s warning “Go
to Statement Considered Harmful.” [19, 67] Contemporane-
ously, Landin [43] extended his SECD machine to support
Algol by adding the general but non-functional J operator.

Subsequent generations of researchers and practitioners
grew the J operator into a variety of continuation operators,
complete with functional reasoning [22, 81] and optimized
implementations. The feedback loop continues today. No-
tably, the orchestration and performance needs of server-
based web applications are posing research challenges for
design and implementation [42, 66, 80].

We must wonder, however:
Question 1. Why are industrial language designers adopt-
ing generators and coroutines instead of continuations?

Generators and coroutines have weaker expressive power:
they are equivalent to one-shot continuations [39, 57]. Nor
are these weaker forms new: it has been many decades since
they were introduced [16, 46, 83]. This timeline is troubling
and evokes questions about the essential design and adoption
trajectory of control constructs.

2.2.2 Higher-order functions
Higher-order functions also prompt alarming questions about
feature adoption. Consider Backus’s advocacy of point-free
functions. He argued that most languages were too compli-
cated for anything beyond incremental evolution but using
point-free functions would be simple enough to enable ex-
tension [7]. However, point-free functions are not prevalent
today, language implementations are complicated, and, as
measured by Chen et al. [13], simplicity is a poor indicator
for adoption.

Question 2. Was Backus right in that language complex-
ity is a sufficiently persuasive reason to adopt functional
programming? More strongly, is worse better [23] in that
implementation simplicity trumps language generality?

Hughes and Wadler disagreed. Ten years after Backus,
Hughes instead argued that non-functional programmers
must be shown the benefits of functional programming if
they are to use it [37]. In particular, he believed developers
prize modularity and that they could be swayed by demon-
strating how higher-order functions achieve it for exam-
ples like numerical differentiation and integration. A decade
later, Philip Wadler suggested that designers were targeting
the wrong properties: interoperability and footprint are more
important than is widely realized and performance is less
so [82]. Departing from Hughes’s simple examples, Wadler
advocated developing sizable “killer applications” that are
facilitated by functional programming and proactively col-
laborating with corporations.

Question 3. What actually convinces programmers to
adopt a language?

Today, functional programming may be a victim of the
persuasiveness of higher-order functions. Instead of adopt-
ing higher-order functions explicitly, many popular lan-
guages use objects: closures and objects are similar [17, 78]
in many of the ways that motivated Hughes [37]. Higher-
order functions are a successful reinvented adoption (Sec-
tion 3.4).

The success of objects is troubling for functional pro-
gramming research. New functional languages often feature
structural typing, type classes, and verified implementations,
while object-oriented languages more typically innovate in
nominal typing, inheritance, and meta-object protocols [10].



Technical differences impede going from one to the other.
The challenge in applying research ideas across these dif-
ferent domains is exacerbated by the social gap between the
communities: tacit knowledge is hard to transfer [60] and
what is important for one community need not be for another
(Section 3.3).

Hypothesis 1. Working on the closure side of the duality
increases influence on programming language researchers,
but decreases influence on both practitioners and software
engineering researchers.

2.2.3 Lazy evaluation, ML, and sexy types
Lazy evaluation, ML, and sexy types are more recent and
controversial. Lazy languages abstract away from the von
Neumann computer model of a program as a sequence of
instructions, which is a deep change for programmers. In-
troduced contemporaneously [55, 77] with laziness, Damas-
Hindley-Milner “ML-like” type systems assist programming
over static semantics. Haskell was created to collectively ex-
plore such ideas [64] – the Great Experiment of functional
languages. Researchers today are continuing the experiment
with “sexy” [64] types (phantom, existential, etc.) that enrich
Damas-Hindley-Milner.

Hughes argued that, next to higher-order functions, lazi-
ness is the other prominent feature of functional program-
ming that compels adoption [37]. Despite such early enthusi-
asm, Peyton Jones’s Haskell retrospective [64] fifteen years
later concluded that laziness caused “prolonged embarrass-
ment” and dropped it from the list of what really matters.
Instead of laziness, Peyton Jones valued the newer ideas of
monads, type classes, and sexy types.

Question 4. How can we prevent sexy types from being
another source of “prolonged embarrassment” to the re-
search community?

In this section, we saw that the limited adoption of func-
tional programming techniques was not due to lack of inter-
est from researchers. Rather, understanding adoption is so
challenging that it justifies its own field of scientific study.

2.3 Calls for Social Awareness in Language Design
Our paper builds on a growing awareness and investiga-
tion of human factors for programming languages and soft-
ware engineering. Here, we survey representative work in
the field.

Chen et al [13] gathered data on 17 different languages
in 1993 and 2003. They then estimated the degree to which
the languages match each of 17 factors and regressed across
the two time periods. Our goal in this paper is for a more
foundational, explanatory, and constructive understanding of
adoption, for which we examine established social theories.

Language retrospectives. SIGPLAN already sponsors a
series of conferences on the history of programming lan-
guages (HOPL). The bulk of the papers are retrospectives

by language designers and they provide valuable source ma-
terial for our inquiries.

Unfortunately, these retrospectives are clouded by a fo-
cus on intrinsic feature design. It would be valuable to col-
lect information about decision making and consequences.
There is a shortage of analysis describing how user popula-
tions change and react over time and how these changes re-
late to the language design. Today’s language designers are
not necessarily trained nor ideally placed to evaluate how
different factors influence adoption. Designers are able to
tell their half of the story, but the user perspective is not be-
ing systematically collected and studied.

Question 5. What data should language designers track?

Question 6. Which third parties have the ability and in-
centive to monitor trends in language adoption and user
communities?

User-centric language design. Language designers are
increasingly examining extrinsic factors in a rigorous way.
These efforts often focus on individual users. For exam-
ple, the Psychology of Programming Interest Group (PPIG)
community established a precedent for examining individual
psychological [61] and cognitive [62] factors. In addition to
such efforts, we argue for socio-technical research of lan-
guages that studies group phenomena.

Scientific norms for rigorous socio-technical research
are in their infancy (Section 4.4). Consider Wadler’s call
for application-driven research in the functional program-
ming community. Research that supports concrete applica-
tions that the community is struggling with is aligned for
impact (Section 3.3) and can exploit valuable perspectives
and knowledge that are otherwise unavailable (Section 3.4).
However, empirical attempts are easily marred by inappro-
priate methodology [30, 50]. For example, it is difficult to
draw conclusions from studies on students [69] unless, of
course, novices are the topic of interest [61].

Question 7. How do we perform, evaluate, and benefit
from research into developing applications in a language?

Adoption-centric language design. Language and fea-
ture designers sometimes explicitly focus on adoption.

Erik Meijer’s “Confessions of a Used Programming Lan-
guage Salesman” [53] describes his programming language
research in terms of adoption. For example, believing inter-
operability with pointer-based languages to be essential to
the adoption of Haskell, he co-invented phantom types, a so-
lution that was contentious at the time. Meijer argues that
interesting and important cases for language features appear
when we stress them. For the same reason, he casts the de-
velopment of limited calculi as an inherently incomplete ap-
proach to the theoretical design of a feature (Section 3.4).

A second takeaway from Meijer is that the benefits of a
feature – such as higher-order functions improving modular-
ity – is only a piece of the adoption process. Switching costs



will dissuade adoption, such as learning a new technology
or interfacing with legacy code, and so they should also be
considered. He attributes this insight to the notional change
function [15]:

Change Function = F (
Perceived Crisis

Perceived Pain of Adoption
)

The change function models the adoption probability of
an innovation as the perceived benefit tempered by the per-
ceived cost. To Meijer, language researchers are failing to
gain traction because their solutions are too painful: lan-
guage features do not optimize the denominator.

Even such a simple model is subtle because the costs
and benefits are subjective. Under it, a valid alternative hy-
pothesis for adoption failure is that the costs and benefits
of language research are not correctly perceived. For exam-
ple, programmers may perceive the benefits of sexy types
to be much lower than language designers do. Likewise, the
perceived cost may be higher than the actual objective cost.
Consider unit testing enthusiasts who see little value in ad-
ditionally following a static typing discipline, and the type
theorists who disagree:

Question 8. What are the perceptions about testing and
typing that drive the differing beliefs, how do they relate
to practice, and what opportunities and course corrections
does this pose?

Hypothesis 2. Both programming language designers and
programmers incorrectly perceive the performance of lan-
guages and features in practice.

The change function is insightful but simplistic; it does
little to help understand many basic phenomena about com-
peting technologies. Sociologists have therefore empirically
developed more nuanced models such as Rogers’ diffusion
of innovation and Mark’s ecological theory (Section 3.2).

Question 9. What are appropriate models for adoption?

Empirical software engineering. Empirical software en-
gineering, typically performed by mining software reposito-
ries and developer communications, is an emerging area of
research. One particularly relevant result is that modularity
bugs are often better understood in terms of human commu-
nication boundaries rather than strict code boundaries [9].
We hope to reproduce such successes of the empirical soft-
ware engineering community, and with more emphasis on
both programming languages and social principles.

A recent promising course of empirical analysis has been
for addressing the burgeoning problems of concurrency and
parallelism. Lu et al. performed an exemplary study of con-
currency bugs in practice [47] that shows language and anal-
ysis research ignores wide-spread technical problems. Con-
structively, they also show that the statistical properties of
actual bugs help motivate and guide context-bounded solu-

tions [58]. Such analyses [6, 27, 32] are quite rare compared
to the large volume of research devoted to concurrency and
parallelism. Even in these studies, few socio-technical de-
tails are examined, such as the relevance of education or
team structure.

We stress the importance of demographics. For exam-
ple, when studying generics in large Java software, Parnin
et al. [63] found that only one or two individuals in each
project are responsible for most of the uses. Who are these
individuals? Does their education and work history matter?
Or perhaps is their seniority in the project or experience with
the code base more significant? Similar questions are perti-
nent for investigating the additional finding that most devel-
opers use generics in a narrow way or not at all.

Hypothesis 3. Developer demographics influence techni-
cal analysis.

3. Mobilizing Transdisciplinary Knowledge
While the programming language research community is
not well-versed in adoption phenoma, historical linguistics,
public health, economics, and other fields have long studied
it. Social scientists have developed both predictive models,
providing insight into how adoption works, and practical
methodologies prescribing how to intervene. For medicine,
the research saves lives.

According to Google Scholar, over 40,000 papers directly
cite Rogers’ work on the diffusion of innovation, and Rogers
estimates that at least 4,000 of the papers empirically vali-
date his model [68]. His is just one model of adoption. Our
presentation cannot be all-encompassing. Instead, we point
out the implications for language research in four fields of
study: longevity, diffusion of innovation, network models,
and social constructionism.

3.1 Long-living Pariahs
How do we prevent a language from dying? Peyton Jones’s
motto for Haskell is to “avoid success at all costs [64].” He
warns that lowering adoption barriers will hurt the ability to
modify Haskell, so embracing adoption is an evolutionary
dead end. In contrast Wadler and Meijer [53, 82] explicitly
advocate lowering Haskell’s adoption barriers. Temporarily
ignoring the question of evolution, we examine longevity.
First, users will abandon any system that provides insuf-
ficient value: do not ignore adoption. Less intuitively, we
found examples in other domains where high adoption bar-
riers improve longevity.

Maintenance. Completely ignoring adoption hurts the
longevity of an innovation. Consider a simple model where
languages provide value to users but every technology
change has a cost (the switching cost). Balcer and Lippman [8]
show that “there is a threshold such that the firm will imme-
diately adopt the current best practice if its technological lag
exceeds this threshold; otherwise, it (temporarily) avoids the
switching costs and postpones.” For an incumbent language



to survive, it cannot fall too far behind its competitors in
providing relevant utility to its users. Similar simple ana-
lytic models have been used to explore a variety of related
phenomena.

Hypothesis 4. Programmers will abandon a language if it
is not updated to address use cases that are facilitated by
its competitors.

Strictness. One surprise is that seemingly harmful adop-
tion barriers can strengthen a community. Quantitatively an-
alyzing religions, Iannaccone [38] found that strict ones –
those that “destroy valuable resources or limit non-group ac-
tivities” – can increase the commitment, participation, and
ultimately, longevity of the group. For example, the Mormon
church prohibits alcohol and caffeine consumption. Like-
wise, the Amish severely restrict the use of modern tech-
nology. These strict policies burden the constituents, yet
Iannaccone found such barriers significantly strengthen the
community.

The insight is that “strictness reduces free riding... po-
tential members are forced to choose whether to participate
fully or not at all. The seductive middle ground is elimi-
nated, and, paradoxically, those who remain find that their
welfare has been increased.” The efficacy of polarization is
surprising: “perfectly rational people can be drawn to decid-
edly unconventional groups. This conclusion sharply con-
trasts with the view, popular among psychiatrists, clinical
psychologists, and the media, that conversion to deviant re-
ligious sects and cults is inherently pathological.” Histori-
cal linguists, independently of Iannaccone, also found that
social isolation increases the longevity of natural language,
which they consider to be just another social construct.

Functional programming imposes a barrier to entry for
programmers who originally learned procedural languages.
It is possible that the social benefits of this barrier are partly
responsible for the benefits usually attributed to technical
benefits of functional programming.

Hypothesis 5. The productivity and correctness benefits
of functional programming are better correlated with the
current community of developers than with the languages
themselves.

Burnham et al. [11] analyze additional ways barriers can
be exploited to improve stability. Consider a marriage under
stress: social and bureaucratic barriers lengthen the divorce
process and therefore provide a window of time in which
a bickering couple might resolve the issue. Likewise, Burn-
ham et al. found that the retention of e-commerce users may
be increased by introducing otherwise unnecessary barriers.
If an upset customer cannot easily transfer his data to a com-
petitor, he may change his mind or the system developer may
have time to address the grievance.

Overall, we find that stability and longevity are well-
studied. Unsurprisingly, adoption should not be ignored be-
cause a language must provide sufficient value to its users to

survive. Less obviously, increasing adoption barriers can
also benefit language longevity under particular circum-
stances.

3.2 Diffusion of Innovation
The process an individual goes through to adopt an innova-
tion motivates the most extensively studied model of adop-
tion: Roger’s diffusion of innovation. In this model, diffu-
sion is the process in which an innovation is communicated
through different channels over time along a network.

The diffusion of innovation is distinct from the diffusion
of information [29]. There may be a long gap between be-
coming aware of a technique or language and beginning to
use it in practice. Sometimes, adoption never happens, even
if the potential adopter is convinced of the possible benefits.
Adoption is a non-trivial process. Similar reasoning shows
that the change function model rediscovered by Meijer (Sec-
tion 2.3) ignores important phenomena.

Hypothesis 6. The diffusion of innovation model better
predicts language and feature adoption than both the dif-
fusion of information model and the change function.

Rogers identifies five steps in the adoption process:

1. Knowledge: an individual is made aware of an innovation
but has not yet investigated it.

2. Persuasion: an individual is interested in and seeking
information about an innovation.

3. Decision: an individual evaluates pros and cons of an
innovation and makes a decision to adopt.

4. Implementation: an individual employs an innovation
and analyzes its use.

5. Confirmation: an individual finalizes the adoption deci-
sion, such as by fully deploying it and publicizing it.

Crucially, adoption may fail or stall at any point of the
process. For a programmer to adopt a language, they must
hear about it, understand if it is relevant, decide to act upon
it, try it out, and then decide to continue. Importantly, the
strategies that are most effective in one stage may be inef-
fective or even detrimental for later ones. For example, im-
personal mass communication is good for providing initial
knowledge, but peer communication is more effective at the
persuasion stage.

Rogers found several factors that influence adoption:

• Relative advantage: the improvement over a previous in-
novation.

• Compatibility: how well an innovation integrates into an
individual’s needs and beliefs.

• Simplicity: how easy the idea is to use and understand.
• Trialability: how easy it is to experiment with.
• Observability: the ability to see results.



In surveying the literature, we found that programming
language researchers concentrate heavily on the first of
these, touting the relative advantage of their innovation. This
focus was also noted by Meijer [53] in explaining his atypi-
cal efforts to address the second factor of compatibility (per-
ceived costs). Research on domain-specific languages has
illuminated some forms of compatibility, but as evidenced
by Meijer’s experience, there is much more to understand
and do. Likewise, while designers often discuss simplicity,
mathematical or syntactic reductionism should not be con-
flated with the meaning here.

We should also consider the other three of the five im-
portant factors for adoption. Suppose Hughes succeeds in
persuading programmers to try a functional language. Will
they be able to apply it to their domain and observe com-
pelling modularity benefits? Likewise, are sexy types suffi-
ciently easy to use and understand, or is more work needed?

Hypothesis 7. Many languages and features have poor
simplicity, trialability, and observability. These weak-
nesses are more likely in innovations with low adoption.

Observability is a particularly challenging adoption fac-
tor. For example, consider statically-typed languages. The
tradeoff between static typing and comprehensive unit test-
ing may change based on the size of the project. Users will
do their initial exploration in the context of small programs,
making it hard for them to perceive the benefits they would
reap in a large software system. We suspect that limited ob-
servability of this sort is a barrier to the adoption of many
programming language techniques.

Researchers outside of our field rely heavily on the dif-
fusion of innovation model. For most adoption concerns,
we therefore suggest starting with an investigation of the
enormous body of empirical and analytic research under the
model. Both its breadth and depth have been successfully
demonstrated many times over.

3.3 Network Models of Diffusion
The diffusion of innovation model considers networks of
adopters. Above, we focused on the decision-making of indi-
viduals. Here, we talk about the influence of network struc-
ture, for which Geroski [25] showed there are a variety of
useful models. We focus on two examples: distinguishing
different kinds of relationships between people and the com-
petition between ideas.

Diffusion of information. Often, knowledge is not the
missing ingredient. For example, a group of researchers
(Kelly et al.) intervened in 1992 on the epidemic HIV out-
break in several American cities [41]. First, in a 3-night
study of bars in the cities, they measured factual knowl-
edge about HIV prevention and found that was already
widespread. Despite acknowledging the fatal nature of the
disease and the existence of effective protection measures,
31-49% of the surveyed at-risk residents reported engaging

in extremely dangerous practices within the previous two
months.

Hypothesis 8. Most professional programmers are aware
of functional and parallel programming languages but do
not use them. Knowledge is not the adoption barrier.

Homophily. The HIV researchers decided to use a so-
cial effect – persuasion by ones’ peers – to spur adoption
of protective measures. Instead of targeting individuals at
random, the researchers exploited social network properties.
They asked bartenders to identify popular customers over
a period of one week. The identified opinion leaders were
taught over four 90-minute sessions how to endorse risk-
reducing behavior to their peers. In time-staggered interven-
tions across the cities, the researchers found average danger-
ous behavior dropped by 15%-24%. This is a large impact
and took relatively little time and effort.

Kelly et al. exploited several network properties when se-
lecting change agents. For example, consider the model of
strong and weak ties [28]. For any three individuals A,B,
and C with two strong relationships (A,B) and (A,C), the
third (B,C) is at least a weak one. Two powerful properties
arise: people will form cliques based on strong ties, and these
clusters will be connected using weak ties. First, that meant
Kelly et al. could rely upon weak connections to rapidly
spread basic knowledge. Second, Kelly et al. exploited the
fact that people with strong relationships are similar (ho-
mophily [52]). The change agents selected by Kelly et al.
understood issues specific to the community and were in an
overall position of influence.

Like measures to reduce HIV risk the benefits of many
programming language features are not directly observable.
Likewise, there is a gap between what people know and
what they do. Social factors, such as education and corporate
policy, may widen or narrow this gap.

Question 10. How can we exploit social networks to per-
suade language implementers and programmers to adopt
best practices?

Organizational innovation. Programming languages are
often used in a commercial setting, where it has been use-
ful to consider individuals of a corporation to form a struc-
tured social network. Sociologists and economists have long
studied communication structure and innovation in organiza-
tions. For example, Minstrom [56] linked the “presence and
actions of policy entrepreneurs” to legislative-level school
choice reform.

As Wadler [82] suggests, researchers should work with
enterprises. Well-studied considerations such as the size of
the organization, its age and structure, and who is involved
in the collaboration influences how a firm innovates. The
choice of what firm to collaborate with and how might fur-
ther benefit from understanding organizational learning [71]
and tacit knowledge [60]. These concepts are useful even if
a language designer does not personally interact with a firm.



Niches, ecological models, and DSLs. A powerful net-
work model is Mark’s [49] ecological theory. Studying mu-
sic, he showed a genre can be modeled as competing for the
time, energy, and preference of its listeners. The insight is
that listeners enjoy and prioritize music that they can discuss
with their friends, so music spreads along social lines. This
creates a connection between an innovation and its demo-
graphic. Just as Jazz music is part of a broader Jazz culture, a
domain-specific language should be considered in conjunc-
tion with the users of the domain. For example, scientific
users of Python are a sufficiently cohesive group that they
created the SciPy series of conferences.

Ecological theories suggest that a DSL is more likely to
be adopted if it solves a problem for a community rather than
an equally sized group of socially disconnected individuals.
For example, while SAT and SMT solving are general tech-
niques, they are primarily used in niches such as verification
that correspond to existing professional social groups.

Question 11. How can we find and optimize for domain
boundaries?

The ecological model is also useful for considering the
way that learning one language influences the decision to
learn another. As evidenced by the popularity of web pro-
gramming, modern programming is multilingual. If an indi-
vidual is a member of overlapping communities, they may
be familiar with many languages. However, due to the com-
petition for time, a user can only strongly like – and develop
deep expertise – in a small number of languages.

Question 12. How many languages do programmers
strongly and weakly know? Is there a notion of linguistic
saturation that limits reasonable expectations of program-
mers?

3.4 Social Construction of Designs
Adoption can improve innovations in ways that are hard to
achieve in the laboratory. Researchers such as Backus [7]
design languages according to hard technological determin-
ism [74], which views individual technologies as inevitable
and therefore can be designed without considering the so-
cial context. Sociologists, however, often examine an op-
posing model: society determines the design and acceptance
of technology. Programming languages are socially con-
structed. For example, quantitative researchers showed that
innovations evolve in a predictable way as they spread across
different communities. Language designers that ignore so-
cial context are therefore missing opportunities to exploit the
natural evolution of technology and do not even consider that
designs may be systemically flawed by opposing the natural
evolution.

Glick and Hays found social learning [26, 33] and adapta-
tion [33, 68] guide the evolution (reinvention) of an innova-
tion. Social learning is a powerful resource. For example, re-
searchers have long examined its use in the social construc-

tion of legislation and other policies. Laws generally spread
from state to state in the US, and Glick and Hays showed
that, by observing early adopters, later adopters of a piece
of legislation are often more innovative in their legislation
because they build upon the experiences of earlier forms.

Norvig famously wrote that “design patterns avoid lim-
itations of implementation language” [59], implicitly sug-
gesting that language designers should heed developer pat-
terns as constructive criticism. The research community has
a good history of capitalizing on large-scale social learning,
exemplified by recent research into support for mocking and
dependency injection as a response to unit testing patterns.
Social learning is a powerful resource – there are many more
developers than researchers and they spend time on different
things – but identifying and exploiting it is difficult.

Question 13. How can feature designers more directly
observe and exploit social learning?

Adaptation is another aspect of social construction that
is inherently difficult for the research community to ad-
dress without participating in the overall community. Often,
a group must modify an innovation in order to use it. For
example, parallelism researchers have long studied how to
schedule tasks across clusters. For web computations, long-
tail activity (particularly sudden load spikes, such as the
“Slashdot” effect caused by social media mentions) emerged
as requiring innovation in elastic configuration. Such needs
vary by domain; a researcher needs domain-specific knowl-
edge. As an example, consider vectorization. In a recent
study [48], Maleki et al. show that different compilers (ICC,
GCC, XLC) greatly vary in which loops they can vectorize
in practice. The authors conclude that “there is no universal
criteria to determine what are the important patterns.”

Question 14. How can researchers, language implemen-
tors, and programmers cooperate to expedite adaptation?

Ignoring the social context of adoption may lead to failure
even when the innovation is needed by the target commu-
nity. Generally, more comprehensive laws follow new, less
developed laws, as predicted by social learning and adapta-
tion. Counter-intuitively, however, Hays [33] also found that
“states with greater societal problems respond with weaker
laws.” The societal context of a problem, such as whether
it is controversial, impacts the design space of relevant solu-
tions. Such understanding may help understand the relatively
low traction for language-level solutions to security and par-
allelism.

Question 15. Has controversy restricted the design space
for socially-important programming language techniques?

3.5 Summary of Pertinent Social Sciences
In our survey above for social science research relevant to
programming languages, our challenge was not in finding
any at all but sifting through an abundance. The examples in



this section were primarily drawn from economics and, un-
der the umbrella of diffusion of innovation research, studies
from public health to religion to public policy.

Less discussed here, we found historical linguistics and
computer supported cooperative work (CSCW) to also be
closely related. Historical linguistics focuses on topics such
as language spread and evolution, multilingualism, and tex-
tual corpora that spans millenia. CSCW studies the role of
computational intermediaries and the human processes that
it augments. The security community, for example, has be-
gun to view many of its core problems in terms of CSCW [5].

All of these social sciences are relevant, well-studied, and
provide methodologies and insights missing from program-
ming language research.

4. Socially-optimized language design
This section combines what the programming language
community knows (Section 2) with what sociology has
demonstrated in the last 50 years (Section 3). We outline
a research agenda that can help us design better and more
adoptable programming languages. Our presentation is di-
vided into four parts: language adoption factors, feature
adoption factors, new types of features powered by adop-
tion, and programming language research norms.

4.1 Improving Language Adoption
As we discussed in Section 3.2, adoption by an individual is
a multi-step process. Decisions on the part of the language
designer can help or hinder adoption at each step. In this
section, we focus on the last two steps, implementation and
confirmation. In the implementation step, a potential user
tries out an idea, and during confirmation, the user chooses
whether and how to go forward with adoption.

Trial costs. The first costs a user will experience in imple-
menting a linguistic innovation are trial costs. These appear
in several ways. There is the cost of installing or using an im-
plementation. There is also a learning curve, the time cost of
familiarizing oneself with the language. This cost depends
on the prior knowledge of the potential adopter as well as
the language design. Minimizing trial costs means, for ex-
ample, making a language similar to one that the program-
mer already knows and uses. An explicit monadic interface
to standard libraries would be an adoption barrier for Java
programmers but a familiar convention for Haskell ones.

As a result, language designers aiming for ease of use
would benefit from more information about the past expe-
riences and background of their target audience. This target
audience might be quite different from the average program-
mer. Not all developers are ever inclined to try out a new
language, and the ones who are might have a very differ-
ent background from either language researchers, the aver-
age industrial programmer or enthusiastic mailing list partic-
ipants. Crucially, as early adopters may have different back-
grounds and tendencies from other demographics, guiding a

language design solely by their experiences risks overlook-
ing the needs of the larger, more conservative demographic.
Characterizing and distinguishing early and late language
adopters would be useful.

Question 16. What sorts of programmers are early
adopters of new languages and tools? What features and
languages are they familiar with?

Analysis and Confirmation. Once developers have com-
mitted to a trial of a new language, they will then exam-
ine it in context. Language designers often have strong be-
liefs about the desiderata of a programming language. Some-
times, they disagree. Convincing programmers to adopt a
language means satisfying programmers’ values, and so it
is natural to find out what potential user populations value in
a programming language.

To give a concrete example, some language designers
believe that compile times are a major annoyance to pro-
grammers, and therefore design their languages for rapid
compilation. For example, the Go developers made com-
pilation speed a priority [4]. Other designers assume that
lengthy compile times are acceptable. (For example, the
C++ template mechanism allows arbitrary computation to be
pushed into the compiler; language designer Bjarne Strous-
trup views this as a useful capability for the language to
have [75].) Where is the validation for either of these as-
sumptions about user preference? For example, it is known
that users of web search engines respond negatively to even
a few hundred milliseconds’ additional delay. Further, users
respond negatively even when they do not consciously notice
the delay [70]. Do programmers react similarly?

Question 17. How averse are programmers to longer
compilation or interpreter startup times? How willing are
they to trade time for improved error checking?

The answers here would be valuable since it would give
designers more guidance in tuning their implementation. If
users prefer immediate concrete feedback (from unit tests),
that would suggest that designers ought to move some static
checks off the critical compilation path. It might also turn
out that developers care about how quickly their language
environment flags mistakes. This would imply that code
generation, rather than static checks, should be moved off
the critical path.

Even the idea of the edit/compile cycle may need to be
deprecated in exchange for live [51] and direct manipula-
tion [31, 73]. User preference may vary from group to group
— and here again, being a potential early adopter may cor-
relate with particular preferences.

Question 18. How does latency sensitivity vary across
user populations?



Hypothesis 9. Developers primarily care about how
quickly they get feedback about mistakes, not about how
long before they have an executable binary.

Latency is one place where empirical evidence would
help improve the adoptability of language designs. Domain-
specific-languages offer another. DSLs have become a promi-
nent research topic. Many researchers focus on the reduced
cost to implement a language. We suspect the reason users
care about them is their low adoption cost. In particular,
embedded DSLs will often leverage syntax, libraries, and
semantics of the host language. If DSLs are to be the so-
lution to parallelism [12], cloud computing [84], and other
software crises, we should move embedded DSL research
beyond the ease of construction.

Hypothesis 10. Users are more likely to adopt an embed-
ded DSL than a non-embedded DSL and the harmony of
the DSL with the embedding environment further increases
the likelihood of adoption.

4.2 Improving Feature Adoption
We now turn from improving language adoption to feature
adoption across languages. Like language adoption, the fea-
ture adoption process can be analyzed through the lens of
Rogers’ diffusion of innovation model. However, while lan-
guage adoption is carried out continuously by millions of
programmers, feature adoption is conducted by a smaller
number of language design practitioners. This population is
likely to have its own culture(s), and the culture will in turn
include a value system that is different from both language
researchers and average programmers.

Trial costs. As before, we begin by discussing the trial
phase of adoption: the adopter has been successfully per-
suaded to try out a feature. This can be a more complex
process than trying out a complete language, since the fea-
ture needs to be integrated into an implementation of a lan-
guage. Approaches such as languages-as-libraries [54, 76]
may, therefore, have more long-term value in simplifying the
essential presentation of ideas, rather than directly benefiting
individual programmers that consume these libraries.

Hypothesis 11. Particular presentations of features such
as a language-as-a-library improve the likelihood of short-
term and long-term feature adoption.

Implementation and analysis. The relationships be-
tween different language features, and between features and
implementation, are not always straightforward. They can be
particularly obscure for designers who do not have extensive
programming language experience.

Consider the BitC language. BitC is designed to be a
type-safe language for operating systems development and
backwards-compatibility with C. The designers chose to use
type-classes for modularity. They found problems, however:
“Research languages can adopt simplifications on primitive

types (notably integers) that systems languages cannot.” Try-
ing to use a complex type system for primitives, in turn,
put unacceptable pressure on operator resolution for prim-
itive types. The language designers concluded that “type
classes just don’t seem to work out very well as a mech-
anism for overload resolution without some other form of
support” [40]. In particular, building the input/output library
proved far harder than they had initially expected.

Their conclusion took years of prototyping and experi-
mentation. The trial cost for a theoretically-established fea-
ture – type classes – was high. Evaluating it by integration
into a full-fledged language and using the new language and
implementation to write a large body of code is hard.

BitC’s scale of implementation is beyond the capacity of
most research projects. Expediting evaluation is an impor-
tant research challenge. It may be, for instance, that a hand-
ful of crucial use cases (such as I/O) account for the likely
sources of trouble. If so, this is a piece of wisdom that ought
to be captured for designers.

Question 19. Can we ease evaluation of proposed lan-
guage features? Can we catalog and predict the likely
sources of trouble?

Hypothesis 12. Implementing an input-output library is a
good way to test the expressive power and functionality of
a language.

Much functional programming research, according to
Hughes, is about modularity. Modularity cannot be evalu-
ated properly in small-scale experiments. It is intrinsically a
phenomenon that matters most with large code-bases, long
development periods, and multiple developers. Code reuse
is always a human process, and typically a social process.
Hence, understanding the social aspects is a fundamental
part of research into reuse mechanisms.

Question 20. Which other programming language fea-
tures also require socio-technical analysis?

Confirmation. Once a feature has been found feasible
and valuable, it may still not be adopted. Many languages,
including Scala, Python, and Java, have open processes in
which proposed alterations to the language are discussed
publicly [1–3]. All these community processes have a simi-
lar structure: a motivated individual or group writes a docu-
ment describing a change to the language. The document is
circulated and discussed. Eventually, some decision is made.
(Different languages are controlled differently. For Python,
ultimate authority belongs to Guido van Rossum. In other
languages, such as Java, authority belongs to a committee.)
For our purposes, the key point is the discussion and vetting
of proposals is largely done in public, meaning that we can
study the factors that encourage or discourage adoption of
features in the language. This process would allow us to test
several hypotheses.



Question 21. To what extent do distinct language com-
munities have distinct values? Are there values that are
important in one community and completely irrelevant to
another?

Question 22. How do the values of a language commu-
nity change over time? For instance, do designers become
more or less performance-focused as languages become
popular? More or less focused on ease of implementation?

The answers to these questions should matter to re-
searchers who want their ideas adopted. Knowing what lan-
guage communities value and how they assess proposals will
enable researchers to better adapt their work to the perceived
needs of these communities.

Even after a feature has been incorporated into a lan-
guage, it may still be rejected at the implementation or con-
firmation stages of adoption. Most users may find the feature
unacceptably difficult to use. For example, C++ supports ar-
bitrary multiple inheritance, but coding standards will pro-
hibit developers from ever using this feature [14, 18]. Eich’s
Law shows that partial feature adoption is expensive for a
platform. “If you are liberal in what you accept, others will
utterly fail to be conservative in what they send,” and subse-
quent language design and implementation updates must be
backwards compatible with the little-used feature.

One way to evaluate implementation of a linguistic fea-
ture is to see how often, and in what contexts, it is used [44].
Systematic study of open-source code repositories is one
strategy for this. Another possible approach is to instrument
the language implementation with data gathering. As yet, it
is not clear whether the latter strategy has benefits to offset
its privacy cost.

Hypothesis 13. Open-source code bases are often repre-
sentative of the complete universe of users.

Hypothesis 14. Most users are tolerant of compilers and
interpreters that report back anonymized statistics about
program attributes.

4.3 Collaborative Features Powered by Adoption
Instead of just focusing on designing languages and features
in ways that bolster adoption, we should also create designs
that improve with adoption. According to Metcalfe’s law, the
value of a network goes up as the square of the number of
users [72]. There are millions of programmers and billions of
users; researchers should consider them to be an exploitable
resource. We draw inspiration from the open source com-
munity, where modern languages come with third-party li-
braries, third-party tutorials, third-party forums, third-party
consultants, and third-party frameworks and extensions.

In a simple thought experiment, we rapidly envisioned
features that address many basic issues in programming lan-
guages by exploiting adoption. These included optimization,

safety and correctness, configuration, robustness, abstraction
level, and metaprogramming. As a few examples:

1. Optimization: An individual program is generally used
by many users. Can programs speed up as the number of
users increase, perhaps by augmenting tracing [24] with
collaborative profiles?

2. Safety: Cooperative bug isolation [45] collects profiling
data from many executions and analyzes the results sta-
tistically. This is just a starting point. For example, a key
challenge facing symbolic execution researchers is find-
ing an input that takes the program down a particular exe-
cution path. These tools are best at local exploration near
an already known path, so collecting execution traces
from many users would aid non-local exploration.

3. Configuration: Software settings such as for security
and system defaults are inherently tied to social norms
and practice [5]. Can languages streamline the design of
open and configurable systems? Every use of a system is
an additional example of typical use [21].

We have used these ideas in our own research – enabling
search and verification of JavaScript applications through
user traces – and are increasingly seeing it in work by others.

Collaborative features face technical challenges. For ex-
ample, mass gathering of user data requires performance and
privacy research, and exploiting the data introduces a source
of complexity and distrust. Likewise, the design of such fea-
tures are non-obvious. For example, if we use collaborative
traces to verify software as part of its standard execution,
we may need to reconsider what we mean by basic concepts
such as sandboxing, which is no longer an all-or-nothing ac-
tivity. We see that there are big opportunities for practical
impact and basic research.

4.4 External Aspects: Improving the Research Process
In this section, we shift focus from language and feature
artifacts to, instead, research methods and norms. As our
community continues to resolve purely technical questions
and outpace practice, examining social factors will become
increasingly important for basic advances. We cannot rely
upon outsiders to perform this research for us: sociologists
and economists have their own work to do. Part of perform-
ing this research will be establishing scientific norms.

Sociotechnical analysis. The technical analysis of fea-
tures should more routinely consider social context. Both
Meijer and Jonathan Shapiro repeatedly found technical bar-
riers to reusing standard functional programming concepts in
richer settings [40, 53]. Simplified models such as extended
lambda calculi inherently hide issues and therefore provide
little assurance about technical relevance. It may be tempt-
ing and even useful to cast the challenge mathematically as
feature composition, where we simply examine larger and
larger calculi. This simplification is wrong. For example,
language research into modularity must, at some point, con-



nect to the phenomena surrounding how different people col-
laborate in putting together code.

Hypothesis 15. Many programming language features
(such as modularity mechanisms) are tied to their social
use.

Critical peer review of social factors. Markstrum [50]
found that programming language research – including oth-
erwise high-quality technical research – is rife with general
claims backed by purely anecdotal evidence. Tolerating such
claims propagates potentially misleading data and worse,
may wrongly signal that the topics do not merit further con-
sideration. Sociology is a science; we suggest treating claims
about social factors in programming languages as such.

Supportive peer review of social methods. Wadler pre-
sented application-driven research as so under-served by the
conference process [82] that it needed the protection of its
own conference series. Drawing upon such momentum, we
should also protect core sociological methods such as quan-
titative analysis, qualitative studies, and ethnographies.

Incorporating social methods into the research pipeline is
a jarring change. In comparison, the computer human inter-
action community already considers social research impor-
tant enough to solicit and accept for their main conference
series [20]. As the research is not immediately applied and
therefore objectionable to many, Dourish presented why the
computer-human interaction community is learning to not
short-sightedly judge research with inappropriate expecta-
tions on “implications for design” conclusion sections [20].

While the programming language community has and
continues to develop powerful mathematical tools and un-
derstanding of languages, we cannot say the same for fun-
damental social aspects of languages. There is a blind spot
in research methodology and values that has allowed a poor
understanding of an important and basic foundation of pro-
gramming languages to remain unaddressed for decades.

5. Conclusion
The programming language community has made enormous
progress in exploring technical issues in language design and
implementation. It has even made steady strides in under-
standing human factors for individual users. However, lan-
guage designers are frustrated as to how to approach the sys-
tematic design of languages that users will adopt.

We showed social factors are a key overlooked foundation
and that they can be scientifically approached. Social science
research has much to teach us about addressing these recur-
ring language design concerns. These lessons are not pas-
sive; we analyzed implications for core concerns and prac-
tices. Hoare’s 1973 “Hints on Programming Language De-
sign” [35] is not merely a classic: it has no identifiable suc-
cessor. It is now 40 years later. We have a wealth of addi-
tional experience and data to draw upon; it is time to write
an updated version. Synthesizing and validating the body of
available information is necessarily socio-technical research.

By focusing on sociological perspectives of adoption, we
have raised 22 open-ended questions and 15 more specific
hypotheses about programming languages. These vary from
directly actionable issues such as what data we should track
or how to exploit collaboration in the design of basic lan-
guage features, to longer-term research concerns such as our
expectations for language use by programmers and even how
to approach language design in a scientific way. The genesis
of these questions demonstrates that focusing on sociologi-
cal principles provides a way to advance the understanding
and design of programming languages.

While this paper primarily focused on adoption, there are
other aspects of programming language research that benefit
from sociological insight. Programming languages facilitate
communication and collaboration between language design-
ers, programmers, and users. How does this happen and how
can we improve it? The time is ripe for the principled exam-
ination of the sociology of programming languages.
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