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Abstract
Some programming languages become widely popular while
others fail to grow beyond their niche or disappear alto-
gether. This paper uses survey methodology to identify
the factors that lead to language adoption. We analyze
large datasets, including over 200,000 SourceForge projects,
590,000 projects tracked by Ohloh, and multiple surveys of
1,000-13,000 programmers.

We report several prominent findings. First, language
adoption follows a power law; a small number of languages
account for most language use, but the programming mar-
ket supports many languages with niche user bases. Second,
intrinsic features have only secondary importance in adop-
tion. Open source libraries, existing code, and experience
strongly influence developers when selecting a language for
a project. Language features such as performance, reliability,
and simple semantics do not. Third, developers will steadily
learn and forget languages, and the overall number of lan-
guages developers are familiar with is independent of age.
Developers select more varied languages if their education
exposed them to different language families. Finally, when
considering intrinsic aspects of languages, developers priori-
tize expressivity over correctness. They perceive static types
as more valuable for properties such as the former rather
than for correctness checking.

1. Introduction
Some programming languages succeed and others fail. Un-
derstanding this process is a foundational step towards en-
abling language designers and advocates to influence its out-
come and overall language use. Likewise, understanding will
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aid developers in determining when and whether to bet on a
new, experimental language. To date, the language adoption
process has not been quantitatively studied in a large scale.
This paper addresses that gap. We use a combination of sur-
vey research and software repository mining to investigate
the factors that influence developer language choice.

Since little is quantified about the programming language
adoption process, we focus on broad research questions:

What statistical properties describe language popu-
larity? We begin (Section 3) with an empirical analysis
of language use across many open source projects. Such
a macro-scale analysis reveals what trajectories languages
tend to follow. Our analysis includes the overall distribu-
tion of language use, and how it varies based on the kind
of project and developer experience.

We found that popularity follows a power law, which
means that most usage is concentrated in a small number
of languages, but many unpopular languages will still find
a user base. The popular languages are used across a vari-
ety of application domains while less popular ones tend to
be used for niche domains. Even in niche domains, popular
languages are still more typically used.

Which factors most influence developer decision-
making for language selection? Section 4 examines the
subjective motivations of developers when picking lan-
guages for specific projects. Knowing what matters to de-
velopers helps language designers and advocates address
their perceived needs.

Through multiple surveys, we saw that developers value
open source libraries as the dominant factor in choosing pro-
gramming languages. Social factors not tied to intrinsic lan-
guage features, such as existing personal or team experience,
also rate highly.

How do developers acquire languages? Knowledge
about the learning process is important because developers
are much more likely to use a language they already know.
In Section 5, we examine how age and education shape lan-
guage learning.

We found that developers rapidly and frequently learn
languages. Factors such as age play a smaller role than sug-
gested by media. In contrast, which languages developers
learn is influenced by their education, and in particular, cur-



riculum design.
What language features do developers value? Whereas

Section 4 looks at how developers pick languages for spe-
cific projects, Section 6 examines their feelings about in-
trinsic features of languages, such as type systems. The re-
sults can help designers craft better languages and advocate
them, and even influence curriculum design due by exposing
knowledge gaps.

We found that developers generally value expressiveness
and speed of development over language-enforced correct-
ness. They see more value in unit tests than types, both for
debugging and overall. Furthermore, how features are pre-
sented strongly influences developer feelings about them:
developers rank class interfaces more highly than static
types.

Our paper is organized around the above research ques-
tions. Before addressing them, we first overview our data
sets and methodology. We finish the paper by discussing
threats to the validity of our results (Section 7), related work
(Section 8), and our conclusions (Section 9).

2. Methodology and Data
We now describe our data sets, methodology, and a key
factor in many of our results: demographics.

This paper is based on several different surveys and data
sources: we used software repositories, surveys conducted
by others, and a survey conducted by us. These were used
in a sequence; the results of one analysis informed the de-
sign of the next. We began with pre-existing data from the
SourceForge repository and The Hammer Principle, a long-
running online survey about programming languages. These
led us to preliminary hypotheses, which we investigated with
surveys. Finally, we cross-validated with the Ohloh project
database.

2.1 Data
We now discuss these data sets in more detail. In chronolog-
ical order, we used:

1. Open Source Repository Metadata: SourceForge.
We wrote a crawler to download descriptions of 213,471
projects from SourceForge [2], an online repository for open
source software. Of most relevance to our analysis, down-
loaded project metadata labels the set of languages used (out
of 100), primary project category (e.g., accounting) from a
set of 223, date of creation, and the project’s owners.

The years examined are 2000-2010. This data set is a rea-
sonable proxy for open source behavior because, for most of
the analyzed period, SourceForge was the dominant software
repository. For example, its modern competitor GitHub was
not even created until mid 2008. Open source community
behavior is important in its own right, and as our results will
show, commercial developers prioritize open source when
making their own adoption decisions.

2. Online Poll: Hammer. “The Hammer Principle” is a
website that invites readers to compare various items, such
as programming languages, based on a multidimensional se-
ries of metrics [13]. Respondents pick a set of languages
that they are comfortable with out of a pool of 51 lan-
guages. They picked 7 languages on average. Respondents
are then shown a randomly sorted series of statements, such
as “When I write code in this language I can be very sure
it is correct.” For each statement, the respondent orders the
languages that they selected based on how well they match
the statement. The survey includes 111 statements, and re-
spondents sorted languages for an average of 10 statements
each before tiring. The survey period was 2010-2012.

The raw and anonymized data was provided by the site’s
maintainer, David MacIver. For each statement, we used a
variant of the Glicko-2 ranking algorithm [8] to convert the
sparse data of inconsistent pair-wise comparisons into a total
ranking of languages. A prior publication [14] describes this
analysis in further detail.

The intuition is that we treat each statement as a tour-
nament between languages. Glicko converts the sparse pair-
wise comparison into a total order. The Glicko family of al-
gorithms is used in chess tournaments and online game rank-
ings for producing a complete ranking of players without ev-
ery pairwise comparison: beating a highly ranked language
contributes more than beating a low-ranked language. Each
player (i.e., language) has an absolute rank and a statistical
confidence for it.

3. Course Surveys: MOOC. We gained access to a
survey of 1,185 students in a massive online open course
(MOOC) on software-as-a-service (SaaS). The survey was
administered at the beginning of the course, so student be-
liefs were not be altered by the instructors, though the re-
sults do reflect sample bias towards programmers with an
interest in SaaS development. Most respondents were not
traditional undergraduate students. Their median age was 30
and a majority (62%) described themselves as professional
programmers.

The survey was primarily conducted for pedagogical pur-
poses, not research. However, we advised the instructors on
question wording, and were given access to the raw col-
lected data. Respondents were asked if they consented to
research use of their responses; 1,142 said yes (96.5% of
all responses). We only analyze responses from adults who
agreed to research use.

Respondents were randomly divided into four subsam-
ples. Some questions were asked to every respondent (MOOC
all) while others were only asked to one subsample. We di-
vided the questions to avoid fatigue in respondents from
overly long surveys while still achieving enough responses
for statistically significant analysis of many questions. Only
two of the subsamples (MOOC b and MOOC d) are relevant
to the the questions addressed in this paper.



Name Responses Age Degree Pro.
Quartiles

MOOC b 166 25 - 30 - 39 51% 60%
MOOC d 415 25 - 30 - 38 51% 58%
MOOC a–d 1,142 25 - 30 - 38 53% 62%
Slashdot 1,679 30 - 37 - 46 55% 92%
SourceForce 266,452 people and 217,368 projects.
Ohloh 590,000 projects.
Hammer 13,271

Table 1: Overview of data sets and populations. Degree =
percentage with at least a bachelor’s in CS or related field.
Pro = Professional programmers.

Name Date Top 6 Languages
MOOC 2012 Java, SQL, C, C++,

JavaScript, PHP
Slashdot 2012 C, Java, C++, Python,

SQL, JavaScript
SourceForge 2000-2010 Java, C++, PHP, C, Python,

C#
Ohloh 2000-2013 XML, HTML, CSS,

JavaScript, Java, Shell
Hammer 2010-2012 Shell, C, Java, JavaScript,

Python, Perl
TIOBE Index Feb. 2013 Java, C, Obj.-C, C++, C#,

PHP

Table 2: Most popular languages in surveyed populations.
There is substantial, but not total, overlap.

4. Online Survey: Slashdot. We created interactive visu-
alizations of the Hammer data set and put them on a public
website. These attracted a substantial amount of web traf-
fic. Viewers were invited to answer a short survey. Most of
the readers arrived via links from popular websites such as
Slashdot and Wired; we refer to this as the “Slashdot” sur-
vey. Over 97% of the responses were collected during a two-
week span in the summer of 2012.

5. Ohloh We cross-validated some results using Ohloh [1].
Ohloh is a website, bought by SourceForge, that tracks
over 590,000 open source projects hosted on SourceForge,
Github, and elsewhere. We used it for queries such as how
many repositories contain a Java file.

Raw anonymized data from the MOOC and Slashdot sur-
veys are available online, as are the visualization and data
exploration tools for the Hammer data (and underlying cor-
relations).1 The accessed SourceForge webpages and Ohloh
API are publicly accessible at time of writing.

1 Currently hosted at http://www.eecs.berkeley.edu/~lmeyerov/

projects/socioplt/data/all.tar.gz and http://www.eecs.

Not every data source is applicable to every question we
ask. Table 3 summarizes how the data was used in various
sections.

2.2 Respondent Demographics
We tracked demographic information on the MOOC and
Slashdot surveys. The surveyed populations are both pri-
marily professional developers, and a majority in each have
computer science degrees. The MOOC population skews
younger than Slashdot and towards fewer professionals (Ta-
ble 1), though the majority is still adult professionals with
degrees. Comparing the results from the MOOC and Slash-
dot surveys helps us tease out population-specific effects and
phenomena in survey design.

Programmers are diverse. Professional developers are es-
timated to be a minority of all individuals who write code
at work or as hobbyists [23]. Our research therefore does
not exhaust the universe of programmers. However, study-
ing professional developers is of particular interest for un-
derstanding adoption, both in terms of societal impact and
understanding the relevance of best-effort practices such as
technical education. We therefore emphasize the results for
professionals. Our surveys are well targeted for this purpose;
80.1% of the responses in the Slashdot survey were about
projects performed in the workplace.

We qualitatively validate our sample against that of pre-
vious work. Table 2 compares the six most popular lan-
guages of our surveys against the TIOBE index, which mea-
sures the volume of web search results for programming lan-
guages [3]. The tables suggest that our survey samples are
broadly in alignment with one another and with the TIOBE
survey. Differences appear attributable to details in ques-
tion wording. For example, programmers might use CSS and
XML regularly, but not think of it as a programming lan-
guage unless prompted to include it. They might use SQL,
but not consider themselves experts. Finally, they might use
a shell scripting language, but not consider it important. We
performed similar grounding comparisons against other re-
sults throughout our work.

2.3 Methodology
To maximize the quality of our surveys, we applied standard
methodology for iterative gathering of large-scale and cross-
sectional data.

Throughout the survey design process, we drew upon ex-
ternal sources. At the start, we examined adoption studies in
various social sciences, such as the diffusion of innovation
model by Rogers [22]. We also performed a literature sur-
vey on beliefs of prominent language designers [15]. Finally,
we engaged in a series of open-ended discussions with pro-
grammers and language designers. The interviewees were
primarily visitors to UC Berkeley, attendees at programming

berkeley.edu/~lmeyerov/projects/socioplt/viz/index.html,
respectively



Section Question SourceForge Ohloh Hammer MOOC Slashdot
§3 What is the macro-behavior of lan-

guages and communities?
X + X+ §4.1

§4 What factors influence language
choice for projects

+ §3.2 and 3.3 + §6.2 X

§5 How do programmers learn and lose
languages

X X

§6 What do programmers believe is im-
portant in a language?

X X + §4

Table 3: Summary of where we use each data source. X= data source used in that section, + indicates that the result is cross-
validated against a related result elsewhere in the paper.

language and software engineering workshops and confer-
ences, Bay Area startup employees, and were academic, in-
dustrial, and government programmers and language design-
ers. These discussions covered several pre scripted questions
and were otherwise driven by the participant. The interviews
helped frame hypotheses as well as helped inform us on how
to phrase subsequent survey questions neutrally and broadly.
Overall, we received advice and input from about 30 people.

To improve the survey instruments themselves, we ap-
plied several techniques.

• Piloting questions. In developing survey questions, we
first designed an initial survey and tested it on several un-
dergraduate and graduate students. We then held a discus-
sion with about 10 graduate students in programming lan-
guages about hypotheses. We then repeatedly revised the
questions, asking undergraduates, graduate students, vis-
iting researchers and professionals how they understood
each question.

• Free response. Each survey asked respondents if any
questions were confusing and, after some individual
questions, whether they had more to add. We do not re-
port on questions that respondents flagged as confusing.
To aid anonymity, we do not release the answers to free
response questions.

• Demographic questions. We applied two techniques to
detect and compensate for sample bias. First, we included
a variety of demographic questions, such as for age and
education. Second, we compared results from several
different surveys and different populations.

Our cross-sectional survey methods have known lim-
itations. For example, while we asked several questions
about respondent’s early experiences with programming
languages, a longitudinal study might assist future work
that explores specific hypotheses. Likewise, we focus on
correlations. To support future examination of causation,
we solicited information on potentially confounding factors
such as developer demographics. Further discussion of our

methodology and the challenges of survey research on pro-
grammers appeared at PLATEAU 2012 [14].

3. Popularity and Niches
We first examine the macro-level question of how adoption
of popular languages differs from unpopular ones. We divide
the analysis into three sub-questions: What is the overall
distribution of popularity? What is the relationship between
languages and application domains? How do developers
move between languages?

3.1 Popularity falls off quickly, then plateaus
The distribution of usage across different languages indi-
cates the risk/reward trade-off for creating a language. If the
median language has significant usage, that makes creating
a language a more promising endeavor than if the median
language accounts for a negligible fraction of usage. (Even
in the latter case, there may still be utility in building a lan-
guage, but the creator has fewer grounds to expect usage.)

Figure 1a shows that a small number of languages claim
most use on SourceForge, Ohloh, and Slashdot. For exam-
ple, on SourceForge, the top 6 languages account for 75% of
the projects and the top 20 for 95%. General purposes lan-
guages compromise most of the top 20 languages in all three
data sets.

We found several notable exceptions to general pur-
pose languages being the most popular. Considering only
a project’s primary language, SQL ranks in the top 20. If we
include all languages for a project, SQL, HTML, and CSS
are in the top 20. We cross-validated with Ohloh’s analysis
of overall language use in actual repositories. Ohloh reports
that XML, HTML, and CSS are the top 3 languages in terms
of any use, and the top 20 further includes Make and SQL.
That a small set of general purpose languages dominate lan-
guage use is not surprising. However, none of the language
designers we interviewed suggested that a language such as
CSS, a constraint-based language for webpage layout, would
be more popular than all of the general purpose languages
such as C and Java. The prominence of domain specific lan-
guages among other popular languages is surprising.
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Figure 1: Language popularity. Slashdot survey data follows a heavy-tailed power law while curated SourceForge and Ohloh
data better follow an exponential curve.

We turn now from the most popular to least popular lan-
guages, the tail of the popularity distribution. Our initial
analysis of SourceForge shows an exponential decline in
popularity, as does cross-validation with Ohloh (Figure 1a).
In contrast, popularity in the distribution’s tail plateaus in the
Slashdot survey. The rankings seems valid because the aver-
age difference in rank for languages in common between the
Slashdot and SourceForge is 6.9. Instead, the disparity seems
to stem from SourceForge and Ohloh language counts being
based on a curated list of languages. The Slashdot survey
does not suffer from such culling because it records all re-
sponses and thus tail behavior is not filtered out. Contribut-
ing to this analysis, despite the Slashdot survey measuring
orders of magnitudes fewer projects, it yields a similar num-
ber of languages. The data sets do not include the same lan-
guages, however: they diverge in tail languages. Over half of
the languages reported in Slashdot are not tracked by Ohloh.

For example, Slashdot respondents report using SAS, and
though manual verification shows SAS being used in repos-
itories, Ohloh does not count it. We conclude that program-
ming language popularity has a heavy tail.

The heavy tail covers many unpopular languages. For ex-
ample, the least popular languages (those with only a single
project) in Slashdot cover 6% of the projects (Figure 1b).
Just 3 of them cover 0.2% of the projects. Lacking the heavy
tail, SourceForge and Ohloh show an equivalent percentage
of less than 0.002% for 3 of the least popular languages.
The unpopular languages can be quite domain specific in
practice. For example, one respondent reported developing
in the Linden Scripting Language for restricted program-
matic manipulation in the Second Life virtual world system.
The heavy tail in our data shows that the market for lan-
guages supports creating many unpopular languages, not just
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Figure 2: Dispersion of language popularity across
project categories. The less popular the language, the
more variable its popularity is across application domains.
(SourceForge data set).

extending the few relatively popular ones such as Java and
Haskell.

3.2 Unpopular languages are niche languages
Our next question is how the popularity of a language relates
to its domain-specificity. To evaluate this, we use the project
category labels provided by the SourceForge metadata. For
each language, we compared its overall popularity (as a frac-
tion of all projects) to its popularity in each category (e.g.,
accounting). We formalize this comparison as the the coeffi-
cient of variation (standard deviation divided by mean). Fig-
ure 2 plots the coefficient of variation of languages against
the percentage of projects using them (i.e., popularity). Table
4 shows several languages in detail.

We find that popular languages receive broad-based sup-
port while unpopular languages tend to be used in a few par-
ticular domains. For example, Java is used by 20% of the
projects, and for 70% of the project categories, Java is sim-
ilarly used by 10–30% (so +/-50%) of the projects within
that category. In contrast, a relatively unpopular language
like Prolog is only used in a handful of categories. For 70%
of categories, Prolog’s popularity within a category will dif-
fer from its overall popularity by +/- 800% rather than Java’s
+/-50%.

A few outliers stand out in our analysis. Assembly (µ =
0.011, σ = 0.03) and Fortran (µ = 0.002, σ = 0.03) vary
in popularity across categories 3-6X more than our model
predicts based on their overall popularity. In effect, they
are being used as domain specific languages for numeric or
low-level programming. That makes them unusual cases of
domain-specific languages that are popular overall. A pos-
sible explanation is that both used to be viewed as general-
purpose languages; they have held onto niches, rather than
colonized them for the first time.

VBScript is an outlier of the opposite sort: our model pre-
dicts more variability across categories than actually occurs.

Java
C++
PHP
C
Python
C#
JavaScript
Perl
Unix Shell
Delphi/Kylix
Visual Basic
Visual Basic .NET
Assembly
JSP
Ruby
PL/SQL
Objective C
ASP.NET
Tcl
ActionScript

Project Categories (223)

Percent of projects in a category
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3: Fraction of projects in each language for differ-
ent project categories. Y axis is the top 20 (95%) languages
and X axis is project categories with at least 100 projects
written in any language. Dark red cells indicate a high prob-
ability of using a particular language within a given project
category. (SourceForge).

Top 6 Languages
Java C++ PHP C PYTHON C#

µ 0.205 0.167 0.119 0.140 0.063 0.062
σ 0.094 0.101 0.117 0.100 0.028 0.029
σx̄ 0.006 0.007 0.008 0.007 0.002 0.002

Top 25-30 Languages
ASP BASIC Obj Pascal Matlab Fortran

µ 0.003 0.003 0.002 0.003 0.002
σ 0.004 0.004 0.003 0.008 0.009
σx̄ 0.001 0.001 0.000 0.000 0.000

Table 4: Mean, variance, and standard error of language
popularity in different project categories. Only project
categories with at least 100 projects are considered. We show
the top six (75% total usage) popular languages and also
languages 25-30 (1.2% total usage). Order of categories is
arbitrary. (SourceForge).

We hypothesize that, as VBScript is a scripting language
packaged with and made for Windows, it attracted a varied
base of developers that were performing a range of tasks.
Despite occasional outliers such as Fortran and VBScript,
Figure 2 shows a clear curve that relates overall popularity
to the variation in popularity across niches.

Even though unpopular languages have their usage con-
centrated in a few niches, they are rarely the most pop-
ular languages in those niches: the consistently popular
languages tend to win out. Figure 3 illustrates this with a
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Figure 4: Probability of picking a language given the lan-
guage of the previous project. Y axis shows the language
of the previous project and X axis shows the language of the
next: each point is the probability p(L′ = x | L = y). Lan-
guages with less than 100 projects are elided. (SourceForge)

heatmap showing the relative popularity of languages across
niches. The languages are sorted by popularity, with the bot-
tom rows containing the most popular languages.

There are cases where less-popular languages overall beat
out more-popular languages in specific niches. For example,
C++ is more popular than C in general but not for compilers
in particular. Likewise, the extent to which one language
is more popular than another varies across niches. Figure 3
shows that PHP, C, and C++ vary across domains.

3.3 Developer migration
Developers work on many projects over the course of their
careers. We do not expect one language selection decision
to be independent of the next, so we examine how develop-
ers move from language to language. More precisely, we ask
how using a language for one project will influence a devel-
oper’s selection for the next.

Karus and Gall have analyzed the commit logs from 22
open source projects, and report that developers tend to stick
to “clusters” of languages – for example, they report that
only small a fraction of Java developers also use C/C++
(7%), and C/C++ developers are five times as likely as Java
developers to use Perl [12]. We hypothesized that we would
see a similar clustering pattern in our data.

We again used SourceForge data to answer this question,
and find differences when examining activity across projects
rather than within a project. For each developer that con-
tributed to multiple projects, we examined how the choice of
language for a project influenced the language choice for the
project with the chronologically next creation date .

We present the results in Figure 4. Each row is normalized
to depict, given that a developer was in a project that used
the language labeled on the right, the probability that the
developer’s next SourceForge project will use the language
on the bottom. The bright diagonal line shows that, for most
languages, developers goes between projects with the same
languages. If we select a first language uniformly at random,
developers will keep to that language 18% of the time. More
often – 52% of the time – they will switch to one of the
top six languages overall. These overall-popular languages
correspond to the vertical bands in Figure 4.

A given prior language only occasionally correlated with
the choice of a specific different language for the next
project. Most notably, developers have high probabilities
to switch between Windows scripting and application lan-
guages, such as VBScript and C#. These languages also
correlate with Microsoft web-development languages such
as ASP. Such correlations are also visible in the results of
Karus and Gall [12], who found other groupings such as
WSDL and XML being used in conjunction with Java.

Notably, we do not see significant exploration within
linguistic families. There is a relatively low probability of
switching between Scheme and LISP, or between Ruby,
Python, and Perl. We conclude that developer movement
between languages is driven more by external factors such
as the developer’s background or technical ecosystem than
by similarity of the underlying languages. This implies that
language advocates should focus on a domain and try to
convince programmers in that domain, instead of trying to
convince programmers who use languages with semantic
similarities to the new language

One limitation of our result is that we are using project
participation as a proxy for language use. Some cases of
language reuse may be due to developers that only saw a
language being used on one project and then used it them-
selves on the next. Likewise, we only sample SourceForge
projects: the effects we report may be stronger in general
because they may carry through intermediate projects not
reported on SourceForge.

Overall, we found a simple and representative model
for language selection: language popularity and prior use
predicts over 75% of the language selection decisions in
SourceForge. Despite our model’s simplicity, it is effective.
More complicated refinements to ours would only need to
address 25% of the unexplained projects.
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4. Decision Making
Above, we analyzed the overall “macro”-level process of
language adoption, with results such as that most unpopular
languages have their popularity concentrated in a few niches.
We now offer a “micro” view: we focus on how individ-
ual developers make decisions. The central research ques-
tion being investigated is which factors influence developer
selection of languages? We break this into two parts: how do
developers weigh features of languages when they are mak-
ing choices, and how do demographics affect the languages
that developers pick?

4.1 Extrinsic properties dominate intrinsic ones
In the Slashdot survey, we asked respondents to rate the
influence of particular factors in picking the language for
their most recent project on a four-point scale from “none”
to “strong”. By asking about their most recent project, we
encourage reflection upon a historical event and deempha-
size ideal preferences that might not be acted upon in prac-
tice. Respondents assigned individual priorities to 14 factors
(Figure 5). We selected the 14 categories such that the dom-
inant choice for picking a language would be represented.
Pretesting helped form the list, and free response comments

from final respondents suggest that no significant categories
are missing.

We wanted to see how these results depend on a devel-
oper’s work environment. To do this, we broke out those re-
spondents who picked a work project and who indicated an
organization size. Of respondents with who marked the size
of their company, we split them into those in companies with
fewer than 100 employees and those with more than 100.
(This threshold is closest to splitting the data set evenly, fa-
cilitating comparison.) The results for these subpopulations
are also shown in Figure 5.

A wide gap separates the most and least influential fac-
tors. The most influential factor, the availability of open
source libraries, was “strong” or “medium” for over 60% of
respondents. For the least influential factor, simplicity, only
25% said the same. As organization size increases, we found
that commercial libraries become more important, and open
source libraries become less so (although open source is still
weighted quite highly). Correctness becomes a more influen-
tial factor, while simplicity, platform constraints, and devel-
opment speed matter less for large companies. Group experi-
ence and legacy code mattered more in larger organizations.



Some of the factors, such as the language’s features or
simplicity, depend on the language design, not on its user
base. Others, such as whether a developer already knows the
language or the ease of hiring developers who know it, are
extrinsic and depend on the social context of the language.
Some factors include a mix of extrinsic and intrinsic aspects.
For example, the presence of libraries or good development
tools is a combination of social and technical factors. Figure
5 is labeled with our judgement about whether a factor was
intrinsic, extrinsic, or mixed.

We emphasize four results from the data:

1. Open source libraries. Open source libraries are the
most influential factor for language choice overall and the
most influential factor for commercial projects at small
companies. They are an important factor, but not the most
important factor, at large companies.

2. Social Factors outweigh Intrinsics. Existing code or ex-
pertise with the language are four of the top five factors
for adoption. In contrast, intrinsic factors, such as a lan-
guage’s simplicity or safety, rank low. Implementation at-
tributes, like performance and tool quality, have both in-
trinsic and extrinsic components. (Some languages lend
themselves more easily than others to a high-performance
implementation.) These mixed attributes vary in impor-
tance.

3. Domain specialization. Libraries, developer experience,
and legacy code are all important in language selection.
These factors are often associated with particular appli-
cation domains. Thus, the developer emphasis on these
attributes helps explain the result in Section 3.2 that less-
popular languages are more niche-specific.

4. Company size matters. Employees at larger companies
place significantly more value on legacy code and knowl-
edge than do employees at small companies.

These results help inform language designers seeking
adoption where to focus their efforts. Developing high-
value open source libraries is likely to have a large influ-
ence to language adoption, particularly for individuals and
small companies. Simplicity will not attract many program-
mers. Smaller companies are less constrained by legacy code
and experience. We suspect that they are therefore likely
more willing to adopt new languages that are not backward-
compatible. In contrast, a backward-compatible change to a
language might be more valuable to a large company.

4.2 Demographic influences on language selection
We now look at how developer demographics affect the lan-
guages that developers select. Understanding this extrinsic
factor clarifies the generality of our results and its role for
future empirical analysis or targeting of developers .

We observed significant correlations when distinguish-
ing the different demographics that selected a particular lan-
guage. Figure 6 shows that, for languages selected by Slash-
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Figure 6: Demographic influences on selecting partic-
ular languages. Self-reported for every respondent’s last
project. Bars show standard error. (Slashdot, nany = 1679,
n1-19 employees = 290, n20+ employees = 790, nage≤25 = 154,
nage>25 = 1382).

dot respondents, age and company size strongly influence
whether a particular language was selected. For example,
employees at small companies are 1.4-3.0 times more likely
to use Objective-C than the typical respondent. Likewise,
when looking at age, developers under 25 rarely use Perl but
disproportionately select Python.

Compared to the breakdowns of Figure 5, we see that
language selection is especially sensitive to demographic
effects. Notice also that different languages are sensitive to
different demographic variables: Perl and Python are age
sensitive, but appear insensitive to company size; Objective-
C is sensitive to company size, not to age. A consequence of
this is that we should expect different language communities
to be different; our observations suggest that it is unsafe
to generalize about which ways a particular demographic
variable will correlate with language usage.

5. Language Acquisition
We now switch focus from the decision to use a language in
a particular project to the process of learning languages. We
examine three related questions: How long does it take de-
velopers to learn languages? When in their careers do they
learn? And how does education affect learning? The previ-
ous section demonstrated that developers prefer to use lan-
guages they already know. Understanding how quickly de-
velopers learn and what induces them to learn helps explain
this adoption factor.

5.1 Learning speed
We examined learning speed because it limits how many lan-
guages a programmer can use. For the language they used
on their most recent project, the Slashdot survey asked re-
spondents to estimate how long it took to learn to use the
language well. To “know a language well” is an intention-
ally imprecise and subjective standard. We showed above
that when developers pick languages for a project, they are
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Figure 7: Reported speed of language acquisition. Bars are
standard error. (Slashdot, n = 1679)

heavily influenced by the languages they believe they know:
developers will be using a standard that is also subjective.

Figure 7 shows the results for all languages for which
we had at least 50 responses. The question was framed
as multiple choice; the y-axis labels of Figure 7 were the
available options.

The median learning times for the most challenging lan-
guage and the most approachable differ by a factor of ten.
Programmers report C++ as the slowest to learn while the
fastest are PHP, Python, and Ruby. Java and C#, which are
semantically similar, are between these extremes and have
similar learning times.

The relative time to learn PHP is noteworthy. PHP is no-
torious for its ad-hoc design while Python well-regarded for
its simplicity. Despite their differences, both languages have
comparable reported learning times of just a few months. We
infer that developers report that they can “use the language
well” even if they have not mastered every nuance. Develop-
ers may only need to learn a subset sufficient for completing
routine work.

More fundamentally, the relative ease of learning PHP
suggests that, while complexity is a barrier to adoption [22],
what makes a language complicated for developers need not
be what makes it complicated for a designer or researcher
(e.g., convoluted formal semantics). For the same reason,
what makes a language simple in a formal sense does not
make it simple for developers and otherwise adoptable.

5.2 On-site language learning
We now examine the relationship between developer demo-
graphics and the languages that they learn. Knowing which
demographics are likely to learn helps language proponents
target their outreach at those potential early adopters.

The Slashdot survey asked respondents whether, during
their last project, they learned the primary language for it.
Figure 8 shows the results broken down by age and orga-
nization size. We found that younger developers are more
prone to learn new languages. Overall, 21% of respondents
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overall	  
<	  20	  employees	  
20+	  employees	  

age:	  21-‐22	  
age:	  23-‐24	  
age:	  25-‐30	  
age:	  31-‐40	  
age:	  41+	  

Probability	  of	  learning	  during	  a	  project	  

Probability	  of	  learning	  the	  primary	  language	  
during	  a	  project	  (by	  demographic)	  

Figure 8: Probability of learning the primary language
during a project. Shading denotes demographics and bars
are standard error. (Slashdot, n = 1536)

learned a language for their most recent project. That rate
increases to 29% for 21-to-22-year olds. While a jump for
younger programmers is not surprising due to inexperience
or perhaps eagerness, we had expected to see a much higher
increase in learning rate. The difference quickly tapers off,
with developers aged 25-30 behaving similarly to those aged
31-40 olds (20% vs. 19%). Relative to age, organization size
has minimal influence.

Our analysis shows that developers in our sample steadily
learn languages through their career. As a result, they are
not limited by the languages that were popular when they
were young or in school. This means that the time scale of
language adoption is not driven by the career timelines of
developers because young developers will keep pick up old
languages and old developers will pick up new ones.

One might think, from these results on learning rates, that
age has an important role in language knowledge. However,
as we show in the next subsection, these differences in lan-
guage learning between older and younger developers have
limited effect on the overall distribution of language knowl-
edge.

5.3 Languages over time
The next sub-question we examine is how a developer’s age
influences the languages that the developer knows. Some
professional recruiters claim that there are large and signifi-
cant differences in the languages that older and younger de-
velopers use [11]. Our results refute this claim.

Figure 10 shows the median age for programmers who
claim to know each of the indicated languages, along with
the 25th and 75th percentiles of age. The distributions are
all very close. This is surprising: we would have expected
changes in education over time to result in large deviations,
such as Pascal skewing old, and Ruby skewing young. In-
stead, the 95% confidence interval for every language in-
cludes the overall response mean age (38). The deviations
are not statistically significant. We observed similar age in-
variance patterns in the results of the MOOC survey. There
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centiles for ages of programmers who claim to know each
language. Languages are sorted by creation date. Distribu-
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1679)

as well, developers of different ages know a similar number
of languages and a similar mix of languages.

This shows that differences in learning by age, described
above, get washed out over the course of a career. In our sur-
veys, programmers of any age are equally likely to remem-
ber or newly learn older languages like Pascal. Young pro-
grammers catch up to old ones, and older ones keep learning.
Popular languages do not thrive or wither based on the age
breakdown of their adherents. Programmers keep learning,
and learn often enough and quickly enough that their age
does not predict which languages they know.

We now look at the overall number of languages a devel-
oper knows. The Slashdot survey asked developers to esti-
mate the number of languages they have learned, and also to
list the languages that they know well. These different ques-
tions capture different levels of knowledge and familiarity
and we include both in our results. Figure 9 plots the mean
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Figure 11: Number of languages by age. As with Figure 9;
there is no clear trend with age. (MOOC, n = 1142)

number of languages known by developers against their age,
along with the inter-quartile range. Both lines are remark-
ably flat. The mean respondent to our survey claims to have
learned ten languages, and lists six that they “know well.”
Likewise, the upper and lower quartile range does not show
any clear trend over time; the gap between the 25th and 75th
percentile of number of languages does not change over time
in a systematic way.

The MOOC survey asked developers to list the languages
they know well and the number they know slightly. The re-
sults are shown in Figure 11. Compared to the Slashdot sur-
vey, the average developer in the MOOC survey knows fewer
languages. However, the results are qualitatively similar in
that there is no age trend. This shows that our result is robust
to both varying the detailed wording of the question and to a
change in the underlying population.

There is a tension between the flat lines on Figures 9
and 11 and the fact that developers are steadily learning.
Since developers of different ages are similarly likely to have
learned a language for their last project, we might expect the
number of languages they know to rise over time. Instead,
older and younger developers report a similar degree of mul-
tilingualism. It follows that developers are losing languages
as well as gaining them. They are forgetting – or at least,
forgetting to mention – some languages.

This result shows that adult developers effectively have a
limited capacity for languages. They typically maintain skill
in a limited number of languages, and will forget as many
languages as they learn. This implies that immediate devel-
oper familiarity is a limited resource for which languages
must compete. Such competition is the basis for ecological
theories of adoption [15].

5.4 Effects of education
We also looked to see how a respondent’s computer science
education affected their subsequent programming language
knowledge. The Slashdot survey asked respondents to mark
which families of languages they learned while in school



Language Examples Overall For CS Non- Correlation of If taught If not Correlation of
Family majors majors CS major vs.

knowing
in school taught learned in

school vs
knowing

Functional Lisp, Scheme,
Haskell, ML

22% 24% 19% 0.053
(0.004 - 0.101)

40% 15% 0.262
(0.217 - 0.307)

Dynamic Perl, Python,
Ruby

79% 78% 79% -0.008
(-0.056 - 0.040)

84% 77% 0.069
(0.021 - 0.117)

Assembly 14% 14% 14% 0.004
(-0.044 - 0.052)

20% 10% 0.138
(0.091 - 0.185)

Imperative/OO C/C++,Java/C# 94% 97% 90% 0.134
(0.087 - 0.181)

95% 87% 0.133
(0.085 - 0.180)

Math R, Matlab, Math-
ematica, SAS

11% 10% 11% -0.020
(-0.068 - 0.028)

31% 7% 0.268
(0.223 - 0.312)

Table 5: Probability of knowing at least one language in the indicated family, overall and grouped by major and specific
educational experience. Also shows correlation coefficients between knowing a language in that family and (a) having a
CS degree, and (b) having learned a language in that family in school. Whether developers learn a language in that family
in school has much more influence than being a CS major. Shown below each correlation is the 95th percentile confidence
interval. (Slashdot, n = 1679)

(e.g., assembly, functional languages, dynamic languages).
Table 5 shows our results.

The vast majority of respondents know a compiled non-
functional language, such as C or Java, regardless of major or
curriculum. Likewise, dynamic languages are widely known.
Less-popular language families (assembly, functional, and
mathematical languages) are more sensitive to prior educa-
tion. Promisingly, developers who learned a functional or
math-oriented language in school are more than twice as
likely to know one later than those who did not.

Educational intervention has limits, however. For math-
ematical, functional and assembly languages, the large ma-
jority of developers that learned a language in that family no
longer know any similar language. Consequently, the corre-
lation between education and later knowledge is relatively
modest.

Notably, having been a computer science major does not
lead to the linguistic versatility of students who learned dif-
ferent language families as part of the course curriculum:
there is no measurable correlation between being a CS ma-
jor and knowing particular programming paradigms. Our re-
sults suggest that an undergraduate curriculum that does not
introduce students to a variety of languages is unlikely to re-
sult in more versatile programmers later in their careers. This
demonstrates a weakness of curriculums that only focus on
languages such as Java and Python.

One limitation of this finding is that it measures only
correlation, and there could be causation in both directions.
Developers who expect to use distinctive families such as
assembler languages might choose to study them in school.
Demonstrating how much causation flows in each direction
is beyond the scope of this paper.

6. Beliefs about Languages
We now turn from programmer actions to programmer be-
liefs. This section looks at what attributes of languages do
developers like or dislike? The question is in contrast to
that of Section 4, which examines how developers pick lan-
guages within the context of a specific project.

Beliefs help shape developer and manager decisions to
learn and advocate languages, and thereby affect the so-
cial dynamics of adoption. Understanding what developers
value, and how developers perceive languages, can help de-
signers both to develop better-liked languages and also to
advocate more effectively on behalf of their languages.

6.1 Perceived value of features
The MOOC-d survey asked developers to rate the impor-
tance of different types of language features on a scale from
unimportant to crucial. The results are shown in Figure 12.
As can be seen, libraries are the top-rated feature. Such per-
ceived importance of libraries matches our finding that li-
braries matter in practice (Section 4), and we stress that these
confirming results are largely free of effects such as priming
because the questions were not asked on the same survey.

We included several options on the MOOC-d survey
that represent related concepts. For example, higher-order
functions are a strictly more powerful language primitive
than inheritance. Interfaces are often used for type systems.
Threads can be used to implement task parallelism.

While these features are similar in many ways from a se-
mantics point of view, they had sharply different priorities
with developers. For example, 72% of developers consid-
ered inheritance important or crucial; only 45% felt that way
about higher-order functions. Interfaces likewise were con-
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Figure 12: Feature preferences (MOOC-d data set, n =
415).

sidered far more important than static types. This is surpris-
ing, given that interfaces are little-used in languages without
static types.

Performance was ranked the second most important fac-
tor. This is significant in two ways. First, particular features
used for low-level programming, such as threads, macros,
static types, and templates all rate much lower. There is a gap
between the importance of performance and the language
features used to achieve it today. It is unclear if the gap is
inherent or if language designers should look for ways to fill
it. Second, given the mid-tier importance of performance in
picking a language for an actual project (Figure 5), we also
see a gap between perception and practice.

The survey asked programmers “How similar are higher-
order functions to objects?” to gauge their beliefs about ex-
pressive or practical differences. Responses are shown in
Figure 13. A third of respondents found the question con-
fusing. Another 20% consider them either totally or largely
unrelated. Only 20% reported “very similar” or “mathemat-
ically equivalent.” (We do not report on confusing questions
elsewhere; confusion in this case was expected as it is in-
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Figure 13: Higher-order functions and objects. Most de-
velopers do not see a close connection between the two.
(MOOC-d data set, n = 415).

tended to reflect not understanding the underlying language
semantics.)

We conclude that a large fraction of developers are disin-
clined to reason about the semantic power of language fea-
tures. Features that appear similar to language designers do
not appear so to users. For example, implementation inheri-
tance can be implemented atop higher order functions: meth-
ods can be replaced by open functions and inheritance can be
modeled with constructor delegation.

The optional free text responses were interesting. They
included “didn’t know this was possible. Sounds like it could
be very useful” and “Objects require imperative program-
ming style while functional programming is a lot less ver-
bose and allows for recursive definition.” These responses
reaffirm our observation that many developers do not per-
ceive languages in the same terms as language designers.

Taken together, we see that developers’ impression of fea-
ture importance is not closely tied to the underlying seman-
tic power of the language construct in question. We infer that
developer preferences here are shaped by factors extrinsic to
the language, such as experience and (mis-)education.

6.2 What programmers enjoy
We now turn to a closely related question of what program-
mers enjoy in a language. This is an open-ended question,
and our data is preliminary. The Hammer data set, with its
large pool of languages and statements, is the data set avail-
able to us that is best suited to the inquiry. The features of
a language that developers enjoy are conceptually related
to the features developers value, and therefore this question
serves as cross-validation for the results presented above.

The Hammer survey asked developers to rank 51 lan-
guages against 111 different statements, including “I en-
joy using this language.” As described in Section 2, we
use the Glicko-2 algorithm [8] to totally order all the lan-
guages for each such statement [14]. From these rankings,
we could correlate different statements. Enjoyment is the
closest proxy in the data set for what we mean by “liking
a language”, so we looked for other attributes of languages
that correlate with enjoyment.

The statement with the highest correlation with enjoy-
ing a language is “This language is expressive” (corr. 0.76).
Other highly correlated statements include “I find code writ-
ten in this language very elegant” (corr. 0.73), and “I rarely
have difficulty abstracting patterns I find in my code” (corr.



Statement Corr.
This language is expressive 0.87
This language excels at symbolic manipulation 0.77
This language encourages writing reusable code. 0.62
The semantics of this language are much different
than other languages I know.

0.56

...
This language has a strong static type system 0.29

...
Libraries in this language tend to be well docu-
mented.

0.00

The resources for learning this language are of
high quality

-0.02

This language is large -0.03
I find it easy to write efficient code in this lan-
guage

-0.06

...
There are many good tools for this language -0.14

...
This lang. has a niche outside of which I would
not use it

-0.42

This is a low level language -0.53

Table 6: Feature desires. Correlations with the statement
“This language has unusual features that I often miss when
using other languages.” (Hammer)

0.66). While open source libraries significantly influence de-
veloper actions, “Third-party libraries are readily available,
well-documented, and of high quality” only weakly corre-
lates (corr. 0.10) with enjoyment.

Attributes other than “enjoyment” are also relevant to our
inquiry about developer preferences. We examined corre-
lations with the statement “This language has unusual fea-
tures that I often miss when using other languages.” The re-
sults are shown in Table 6). Perceived expressivity strongly
correlates with this statement (corr. 0.87); developers value
features that ease development. In contrast, there is no sig-
nificant correlation between having unusual-but-desired fea-
tures and the ease of writing efficient code. Expressivity and
performance are perceived to be unrelated across actual lan-
guages.

6.3 Types vs. testing
We close by examining the perceived tradeoffs around static
types, particularly as contrasted with unit testing. Static
types are a controversial choice in language design, and we
hope our results help show designers how developers react.

The MOOB-b survey included a set of statements about
types and testing; respondents were asked to mark if they
agreed or disagreed with each. The questions were binary;
yes and no were the only options. We present only the re-
sults from the self-identified professional developers in the

Question Agreement

Unit testing will reveal bugs that static
types miss

31% (+/- 9)

Static types will reveal bugs that unit
testing misses

7% (+/- 5)

Unit testing will reveal more bugs that I
care about than static types

19% (+/- 8)

Static types will reveal many bugs that
I simultaneously care about and are
missed by unit testing

6% (+/- 5)

I see the value of static types 36% (+/- 10)
I see the value of unit testing 62% (+/- 10)
I enjoy using static types 18% (+/- 8)
I enjoy using unit testing 33% (+/- 9)
Most of the value of unit testing is in
finding bugs

33% (+/- 9)

Most of the value of static types is in
finding bugs

8% (+/- 6)

I have used statically typed languages
for large or many projects

39% (+/- 10)

I have used unit testing for large or
many projects

34% (+/- 10)

Using types helps improve readability 45% (+/- 10)
Using types helps improve safety 44% (+/- 10)
Using types helps improve program
modularity

19% (+/- 8)

Using types is generally important, de-
spite the costs

19% (+/- 8)

Using types is rarely important 8% (+/- 6)

Table 7: Beliefs about types and testing. Shows fraction of
responses agreeing with each statement, and 95th percentile
confidence bounds. Results from self-identified professional
developers in MOOC-b sample. (n = 96)

sample. This filters out responses from students, whose ex-
perience may have been derived from small classroom as-
signments, rather than realistic industrial development. This
leaves us with 96 responses — small compared to the other
populations in this paper, but large enough for meaningful
statistical analysis.

Table 7 displays the results. Even despite the large mar-
gins of error, the results are striking. Only 36% “see the
value” of static types. In contrast, 62% – nearly twice as
many – see the value of unit testing. Developers are nearly
twice as likely to “enjoy using” unit tests (33%) as compared
with static types (18%).

Contrary to our initial suspicions, developers describe
neither types nor testing to be primarily about finding bugs.
Only 8% of professional programmers think finding bugs
is the chief benefit of static types, while 33% say the same
about unit tests. Respondents instead find static types to be
important in two areas: readability (45% agreement) and



safety (44% agreement). Bug finding ranked third and mod-
ularity a distant fourth.

We suspect the survey population was biased in favor of
dynamic languages because the course associated with it
focused on software-as-a-service and therefore many web
technologies written in dynamic languages. Even so, this
result shows that there is a population of developers who are
broadly skeptical of the benefits of static types.

We cross-validated this result using the Hammer data. We
looked for statements in the Hammer dataset that correlated
with “This language has a strong static type system.” Static
types correlate strongly with statements about correctness
such as “If my code in this language successfully compiles
there is a good chance my code is correct.” (correlation
0.85). However, languages with static types are much less
closely correlated with languages developers claim to enjoy
(corr. 0.38) and with expressivity (corr 0.31). Irrespective of
the objective value of static typing, this is further evidence
that many developers do not value it highly.

The MOOC population is by no means representative of
all programmers. The underlying course was taught in Ruby
and targeting web application development. However, we
believe the results are valid for dynamic language program-
mers. Even on this restricted population, there are useful
take-aways from these results. Our data suggest that devel-
opers value the readability provided by types more than they
do many other benefits. The data also suggests that develop-
ers do not find that types improve modularity — contradict-
ing claims often made on behalf of types. These observations
suggest points where future language design research could
better meet perceived needs.

7. Threats to Validity
This section discusses the limitations of our work. We begin
with threats to validity (whether our results are accurate
on the populations we sample) and then consider reliability
(whether our results would apply to other populations.)

7.1 Validity
Respondents to the Slashdot survey had the opportunity to
explore the Hammer data visualizations before answering
the survey. This may have biased them. Because the survey
questions are not closely related to the visualized data, we
expect that the priming effect and consequent bias will not
be large.

Not everybody who starts a survey will complete it. We
lack information about respondents who declined to submit.
They may therefore differ in demographics, background, or
motivation from those whose responses we have.

The methodology used to extract data from the Hammer
Project is novel, and we do not have a rigorous analysis
of the statistical margin of error. The underlying Glicko
algorithm is well documented and widely used, however.

Likewise, extracting data from SourgeForge required
making some assumptions and judgement calls. Projects can
change category, languages, and authors over time. We only
look at one snapshot in time. In our experience, it is rare for a
software project to change its primary language or category,
however.

Our work is largely cross-sectional, looking at one mo-
ment in time. While we examine some longitudinal top-
ics (how populations evolve) using the 10 years of Source-
Forge data and careful phrasing of some of our survey ques-
tions, we suspect programming languages are reaching the
point where we can and should examine questions that span
decades. Furthermore, we examine correlations. Empirical
analysis of causality is an important growing area [9] and
would help elucidate the adoption process.

7.2 Reliability
Section 3 uses data from the SourceForge repository, which
hosts open-source development. It is possible that propri-
etary code bases are statistically different: Obscure lan-
guages might hang on longer inside corporate IT depart-
ments, for instance. However, open source development
is a major part of all development activity and its effects
will constrain corporate development. As we showed, open
source libraries have a major influence on language selection
even within corporate development.

Our survey samples, while large, are self-selected. In par-
ticular, our Slashdot survey will be biased towards highly
engaged programmers who read technology blogs and are
interested in programming languages. The Hammer Princi-
ple results are likely from a similar population. Our MOOC
data will be biased towards programmers who wish to learn
more and improve their skills. Because the MOOC course
was focused on web-based applications and was taught in
Ruby, we expect that the population will be biased towards
dynamic-language users. This is a particular concern for the
Hammer data, where we lack any sort of demographic infor-
mation about respondents.

All three surveys are biased towards Americans and
English-speakers. While these are important constituencies,
they are not the full universe of programmers. More work is
needed to check whether these results hold in other popula-
tions. We highlighted points of agreement between our data
sources. The overlap in results across our surveys suggest
our work does generalize to some extent.

While many of our results are cross-validated with sev-
eral data sets, some are not: different surveys asked different
questions and different data sources include different meta-
data. The SourceForge data is our only source in Sections
3.2 and 3.3. The observations in Section 4 about the impor-
tance of legacy knowledge and code are based solely on the
Slashdot data set, as are the results about language learning
time in Section 5.1. In Section 6, the MOOC-d survey is our
only source for the observation that developers have diver-
gent opinions about semantically-similar features.



Going forwards, we believe it would be valuable to study
professionals for whom programming is a significant but not
the primary job responsibility. For example, engineers and
scientists often do not come from computing fields but are
important classes of programmers.

8. Related Work
Relatively few studies empirically analyze language adop-
tion. Fewer focus on developer decisions, explore cross-
language phenomena, or use large data sets.

Most similar to our work is that of Chen et al. [5]. They
gathered or estimated data about 17 different languages in
1993, 1998, and 2003 and then performed regression. In con-
trast, we examine developer actions and decision making, in
much greater scale and fidelity, and with the intent of identi-
fying and quantifying influential factors.

Our analysis of SourceForge is a variant of software engi-
neering literature in mining software repositories. For exam-
ple, Parnin et al. [18] found that only 14% of developers are
responsible for incorporating generic classes into existing
Java programs; most developers did not adopt this new lan-
guage feature but a few became enthusiastic advocates. Sur-
veying programmers about Java (generics) and C++ (tem-
plates), we found differences in developer perception of the
same phenomena. This may entail that, as was performed in
our work, adoption should be studied across languages and,
for individual developers, across projects.

Others also mine repositories to understanding language
feature and API adoption within an individual language or
project. Okur and Dig [17] show that, given a large library
of parallel constructs, 90% of usage is accounted for by 10%
of API methods. Only a limited portion of functionality has
been adopted. Likewise, Vitek et al. characterize the use of
laziness in the R language [16] and dynamic code evaluation
in JavaScript [20]. We examine different questions.

Perhaps the most relevant repository mining research is
that of Karus and Gall who investigate the propensity of
open source developers to use multiple languages [12]. They
found significant overlap, particularly between closely re-
lated languages such as XML Schema and XSL. Their find-
ing does not conflict with our result that transitions between
languages are mostly related to popular and past experience
(Figure 4). Consider the likely case that the programmer will
switch from editing a WSDL file to editing a Java file: these
two languages are often part of the same ecosystem. The
probability of then writing PHP is closer to the overall pop-
ularity of PHP; PHP is outside of the ecosystem.

Many of the questions we answer fundamentally differ
from those in the above repository mining studies [12, 16–
18, 20]. Mining exposes the “ground truth” of development
practices by focusing on artifacts. We use surveys to enable
more direct inquiries to humans about their decision making
process. Decision making has unclear physical artifacts and
is subject to perception: it is unclear how to understand de-

cision making based on just typical repository information.
Furthermore, we use surveys to reveal extrinsic data that is
not in typical software repositories, such as demographics.

Small-scale surveys have been used to answer some lan-
guage use questions. Datero and Galup ran a web survey to
examine differences in language knowledge by gender [6].
They found modest differences. For example, within a pool
of professionals, male developers were more likely to know
most languages, and COBOL was the only language with a
pronounced female lean. A study at a single American uni-
versity found no significant bias in the languages learned
by undergraduates there, however [19]. Not presented, our
data shows that language selection is gender-neutral on a
broader sample than the above work. However, we reported
even stronger biases relating to age and organization size.
The large scale of our survey has enabled regressing along
many dimensions such as these.

Adoption decisions for domains beyond programming
languages is studied by social psychologists, management
science researchers, and other social scientists. Several
leading models of adoption arose over the years, such
as the Technology Acceptance Model (TAM) [7] and the
Unified Theory of Acceptance and Use of Technology
(UTAUT) [25]. These causal, quantitative models relate fac-
tors such as perceived ease of use to ultimate adoption deci-
sions. Within a particular population, they predict much of
the variance in an individual’s desire to adopt a new technol-
ogy [24]. Models that have been tuned for software develop-
ment have been able to explain 63% of the variance in devel-
oper intention to use object-oriented design techniques [10].
Whereas that work aims to understand the general factors
behind technology adoption, we seek those that are specific
to programming languages.

Generalizing the notion of adoption even further, Rogers’
seminal Diffusion of Innovation process is perhaps the most
extensively studied model of adoption [22]. A 2000 study
shows that this model accurately described the process by
which COBOL programmers at a large financial-services
company learned the C language [4]. A subsequent single-
organization study looks at the decision of whether to adopt
a formal development methodology [21]. In both cases, the
researchers ignored the intrinsic technical attributes of the
language or methodology in question, and exclusively con-
sidered social factors: we examine both. Furthermore, both
cases use sample sizes much smaller than ours: 71 in the
first case, and 128 in the latter. We provide a broader view
by examining more factors and over wider scenarios.

Finally, various histories of programming languages pro-
vide insight into the adoption of specific languages. For ex-
ample, SIGPLAN sponsors a series of conferences on the
history of programming languages (HOPL). The bulk of the
papers are retrospectives by language designers on a partic-
ular language or related sequence of languages. In contrast,
our work seeks to compare across languages and communi-



ties. Furthermore, HOPL retrospectives tend to include deep
but anecdotal analysis by language designers, while we per-
form quantitative data analysis.

9. Conclusions
This paper has looked at programming language adoption
through the lenses of four separate research questions: look-
ing at large-scale statistics, looking at programmer deci-
sions on concrete projects, language learning, and general
beliefs about languages. These separate lines of inquiry sup-
port each other and paint a unified picture of adoption, with
lessons for language designers, advocates, educators, and
employers.

In Section 3, we asked what statistical patterns language
adoption obeyed. We demonstrated three claims: First, pop-
ularity falls off steeply and then plateaus according to a
power law. Second, the less popular a language, the more its
popularity varies from niche to niche – popular languages
are consistently popular across domains of use, less-popular
languages tend to have specific domains. Last, developers
switch between languages based primarily on the domain
and use of a language, not based on its linguistic features
(syntax or semantics.)

Section 4 used survey data to show what factors influ-
ence developers when picking projects. We found that exist-
ing code, existing expertise, and open source libraries are
the dominant drivers of adoption. This dovetails with the
previous finding: libraries and code are niche-specific, and
therefore this developer motivation helps explain the statisti-
cal findings above. The fact that developers typically do not
consider particular language features important in choosing
languages is likewise consonant with our statistical finding
that developers do not tend to switch between semantically
related languages.

One consequence of these findings, taken together, is
that language designers and advocates should emphasize
libraries. It is easy to find anecdotal examples of libraries
that had major influence on language adoption within niches,
such as numpy for numerical programming in Python, and
Ruby on Rails for web applications.

Section 5 asked what causes developers to learn lan-
guages. We find that professional developers learn and for-
get languages throughout their careers, and that as a result,
age has little to do with language choice. Some languages
are easier to learn than others, and the self-reported ease
with which developers learn does not seem closely related
to the underlying simplicity of the language’s formal seman-
tics. Past education has moderate influence. Having been ex-
posed to a language paradigm in school makes developers
more likely to learn or remember similar languages later in
their career.

In both Sections 4 and 5, we found that developers demo-
graphics strongly differ in their language preferences. We
make two observations relating to this occurrence. First, em-

pirical analysis of programs written in the same language
may need to check for sample bias due to developer de-
mographics. Second, ecological models may apply to lan-
guage adoption as we hypothesized in [15]. Ecological mod-
els would predict that languages spread along demographic
boundaries because the languages compete for them. Our
data reveals that spread patterns exist, and that developers
do indeed maintain a limited working set of languages.

Finally, we looked at developer feelings about languages
when not tied to particular projects. Libraries still rate
highly, supporting the results of Section 4. We also found
that developers have divergent feelings about semantically
similar languages features. This suggests that experience and
training shape developer language perception, underscoring
the results in Section 5 about the importance of education.
We find that developers consider ease and flexibility as more
important than correctness. Developers show significant un-
ease and unenthusiasm for static typing. This suggests that
today’s type systems may err too much on the side of catch-
ing bad programs rather than enabling flexible development
styles. Developers emphasize the benefit of types in under-
standing programs, suggesting one benefit researchers can
build on.

Our results also help inform the broader computer science
community. Since language selection is tied to libraries,
legacy, and familiarity, there are history-effects and therefore
potentially multiple stable equilibria. This suggests that if
today’s popular languages can be replaced or improved, the
changes will be durable.

Beyond the immediate results of this study, our experi-
ence has implications for future empirical research of pro-
gramming languages, which is less actively practiced than
in software engineering. We found that survey methods (us-
ing both new and existing surveys) to be a powerful tool for
exploring hypotheses about language adoption. We suspect
these methods will be an increasingly valuable technique go-
ing forwards, especially given the popularity of the Inter-
net and online courses. Likewise, we hope our data, and the
methodology subtleties we encountered in gathering it, will
support future analysis efforts. Of particular note are our
large set of responses, tracking of respondent demograph-
ics, and solicitation of data about concrete languages and
projects.

We have examined basic questions about language adop-
tion. Going forward, there are many more questions about
the sociotechnical nature of programming languages [15].
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