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Abstract

We present cross-sectional analyses of programming lan-
guage use and reflect upon our experience in doing so. In
particular, we directly analyze groups of 1,500-13,000 de-
velopers by using questionnaires and 260,000 developers
indirectly so by mining 210,000 software repositories. Our
analysis reveals programming language adoption phenom-
ena surrounding developer age, birth year, workplace, and
software repository preference.

We find that survey methods are increasingly accessible
and relevant, but there are distinctive problems in examin-
ing developers and code repositories. We show that analyz-
ing software repositories suffers from sample bias problems
similar to those encountered when directly polling develop-
ers. Such bias limits the general validity of research claims
based on analysis of software repositories. We aid future em-
pirical researchers by describing concrete practices and op-
portunities to improve the results of developer and software
repository surveys.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: general

General Terms Languages, Human Factors

Keywords sociology, programming languages, surveys

1. Introduction

The programming language design community largely fo-
cuses on technical aspects of languages: how to efficiently
implement a language, how to automatically reason about a
program written in one, and how to prove properties, such
as type safety, about the language itself. However, program-
ming is about more than technical aspects. Software devel-
opment is a human process carried out in a social context,
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and psychological and sociological factors can make the dif-
ference between a successful language and an unsuccessful
one. In earlier work [9], we called for the programming lan-
guage research community to devote more attention to ana-
lyzing and exploiting the social processes that surround lan-
guage adoption. Here, we make a first step in achieving this.

There has been increasing interest in the social and psy-
chological aspects of programming. Small-scale user studies
are increasingly common, and the mining software repos-
itories community even has its own long-running confer-
ence series. Many outside fields rely on large-scale cross-
sectional surveys, such as telephone polls for economics.
Such surveys are used throughout the technology industry
today, including for software engineering research, but only
infrequently as a programming language research technique.
With the popularity of programming and the rise of the Inter-
net, it is now relatively easy to do large-scale cross-sectional
surveys of developers. Should we, and if so, how?

For the last two years, we have been gaining experience
conducting and analyzing mass surveys of developers and
repositories. Our ultimate goal is to understand the adoption
process for programming languages and individual language
features. This paper reflects on the research methods we
used, and particularly their strengths, weaknesses, and some
of the pitfalls we encountered. Our audience is programming
language and software engineering researchers who might
wish to pursue similar questions or methods.

In particular, this paper analyzes three topics about
methodology:

¢ Analyzing language adoption through big, sparse, and
high-dimensional data sets. Many of our analyses are
based on such data data. Machine learning algorithms
and interactive visualizations were our two main and
complementary techniques for extracting research hy-
potheses. Furthermore, we had to take care to track un-
certainty through both.

e Survey design. The wording of questions biases results.
Researchers and practitioners do not always share the
same vocabulary and basic understanding of topics, so
surveys must compensate for this difference. We discuss



specific cases of the problem that we encountered and
our experiences in using careful phrasing, pretesting, and
soliciting free-form responses to combat it.

¢ Sources of sample bias in developers. We show how de-
veloper demographics shape results of developer surveys.
We also find demographic biases in software repository
surveys. Put together, these highlight a methodological
dangers that weakens the generality of existing results
reached by mining software repositories. Given the in-
creasing popularity of repository mining, bias is a wide-
spread concern.

Overall, we believe surveys are an effective methodology
—if used correctly. We end on a promising note by describing
emerging opportunities for performing effective survey re-
search on programming languages. For example, while tradi-
tional student surveys insufficiently sample developers, mas-
sive open online course surveys can do better.

We examine four large surveys in this paper. The first sec-
tion begins by discussing our reliance upon machine learn-
ing and visualization techniques for exploring a two-year
survey (“Hammer”) of comparative statements by program-
mers about languages. Hypotheses formed by interacting
with the visualizations led to two further surveys. First,
we arranged for adoption questions to be included as part
of the entry survey for Berkeley’s Massive Open Online
Course (MOOC) in software engineering for software as a
service [4]. Contemporaneously, our initial visualizations
attracted significant social media attention, which we used
to collect responses for another mass survey. As many re-
spondents visited from the Slashdot website, we refer to this
survey as the Slashdot survey. The Hammer, MOOC, and
Slashdot surveys rely upon self-reporting, so we also ex-
amined 10 years of recorded activity for all projects in the
SourceForge software repository.

We found a number of challenges specific to surveying
programmers. Section 3 discusses how challenges in word-
ing questions surface for this community. Following that,
Section 4 looks at demographic issues.

Our conclusion is three-fold. First, surveys are a power-
ful but rarely utilized research instrument for basic questions
in programming languages and software engineering. Sec-
ond, there are many emerging and underutilized opportuni-
ties for performing surveys. Finally, survey methodologies
from other fields apply to our own. We especially stress an-
alyzing and controlling for demographics before reporting
conclusions about surveys. This warning applies irrespec-
tive of whether they are directly of developers or indirectly
through software repositories.

2. Hammer: Sparse High-Dimensional Data

“The Hammer Principle” is a website by David Maclver that
invites readers to compare programming languages based on
a series of metrics [7]. He (graciously) provided us with
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Figure 1. The selection phase of Hammer Data gathering

anonymized survey results. The survey is of particular in-
terest because of its scope: it provides a significant amount
of data about how developers compare languages accord-
ing to properties such as correctness, speed, simplicity, job
prospects, and enjoyment.

Analyzing this data helped us spot possible topics to
investigate. We describe our technique here, both because
we think our software will be useful to other empirical re-
searchers and because the methodology may be of use for
other domains with sparse comparative data.

Our approach was to analyze the raw data using a com-
bination of machine learning algorithms and then examine
the processed data through interactive visualizations. After
the up-front investment in building the software for these
steps, combined, they enabled rapid formulations and in-
vestigations of hypotheses. Tracking uncertainty through the
techniques helped avoid incorrect conclusions.

Our processed data and interactive visualizations are
available online'. We believe they can help other researchers
frame hypotheses beyond those already in our own work.

2.1 The raw data

Over two years, respondents came in bursts from popular
online sites such as Slashdot, Hacker News, Reddit, and
Lambda the Ultimate [8]. They went through the following
process:

1. Pick languages Respondents picked a set of languages
that they “know well enough to feel qualified to rank”
out of a pool of 51 (Figure 1). The average respondent
picked 7 languages.

2. Rank languages by statement Respondents were shown
a series of statements. For each statement, a respondent
ordered the previously selected languages based on how
well they matched the statement (Figure 2). The average
respondent answered 10-11 questions.

www.eecs.berkeley.edu/~1meyerov/projects/socioplt/viz/
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Survey Conducted by Description Scope
Hammer David Maclver Survey of developers about 50 languages and com- 13000 people
. . .| 2years
paring 100 properties about them. No demographic
information maintained.
MOOC David Patterson and | Entry survey for a Massive Open Online Course in | 1100 people
Armando Fox (course | software engineering for software as a service.
instructors), with ad-
vice from us
Slashdot the authors Survey posted by us to understand audience from 1600 people
R 2 weeks
Hammer visualization
10 years
SourceForge | SourceForge Project descriptions from a massive open source | 200000 projects
software repository 260000 people

Table 1. Data sources mentioned in this paper
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Figure 2. The ranking phase of Hammer Data gathering

To date, over 13,000 people have filled out the survey. In-
dividual responses are sparse and often contradictory, so we
use machine learning algorithms to extract reliable informa-
tion. The data set is high-dimensional (110 statements about
50 languages), so we constructed several interactive visual-
izations to explore the results of the statistical analysis.

2.2 Ranking algorithm

The Glicko-2 ranking algorithm computes the data for our
first visualization. The visualization shows how well each
statement describes each language (Figure 3). This provides
a human-understandable description for each language and
reveals languages that rank similarly — or fail to — based on
certain properties.

The theory of preference aggregation and voting tells us
that there may be no unique way to order languages by how
well that statement describes them. (Imagine there are only
two responses and one dimension: one respondent may rank

A > B and another B > A.) Beyond this theoretical limit
is a more particular problem: the Hammer data is sparse for
unpopular languages.

The Glicko-2 ranking algorithm is designed for this
sparse and inconsistent scenario [5]. It is commonly used
in sports: Glicko-2 generalizes the original Elo rating sys-
tem and underlies XBox’s TrueSkill online player rankings.

Suppose a respondent ranks a few languages for some
statement X. The languages might be given order A > B
> C. We treat this as the outcome of 3 different matches
between “players” A, B, and C in “sport” X, where A > B,
A > C, B > C. While respondents only looked at a total of
140,000 statements, these sequences expand into 4,000,000
pairwise comparisons. This was enough data for Glicko-2 to
report high confidence on most rankings.

Glicko-2 proceeds as a simulation. A weak language
beating a strong language gives the weak one a big boost in
score and the strong one a drop, while there is little change
in ranks from a strong language beating a weak one. Time
and contention is factored in by tracking the deviation across
matches: an occasional upset is disregarded, but if the upsets
become consistent (e.g., a language was upgraded), the rank
will converge on the new value. Likewise, high disagreement
about a statement is reflected by a high deviation.

2.3 Interactive Visualization of Language Rankings

We used the results of the Glicko-2 analysis to build an inter-
active visualization. It is a form of heat map for exploring the
matrix of language vs. statement (Figure 3). Each row shows
how one language ranks relative to all others according to
a series of statements. The size and color of a circle both
indicate the rank of agreement. For example, a big green
circle shows that most programmers agree that a language
matches the statement better than other languages. In con-
trast, a small red circle shows most programmers agree the
language matches the statement less than other languages. A
language’s row, in effect, is a fingerprint for quickly com-
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Figure 3. Interactive visualization of language rankings. Current state shows a filter for 4 particular languages across 5
particular statements sorted by match against the statement “I often feel like I am not smart enough to write this language.”
The clipped statement is “This language has unusual features that I often miss when using other languages.”

paring languages. Circles different from their neighbors are
generally of interest, as are particularly small or big ones.

Clicking on the axis of languages sorts them alphabeti-
cally, and each language and statement has a clickable tog-
gle controlling whether it is shown. Clicking on a circle will
simply sort the languages by how well they match the state-
ment described by the circle. While simple, these three in-
teractions enable the exploration pattern of focusing on a
statement or language, finding an unusual dimension in it,
and then seeing how other languages and statements com-
pare along it.

For example, we looked up Coq’s fingerprint and found
that the strongest statement programmers make (the biggest
circle in the row) is that they do not feel smart enough to
write in it. Curious about how Coq relates to other lan-
guages in this problem area, we clicked on the circle. Fig-
ure 3 shows that the two languages that most often prompt
these feelings of inadequacy are Coq and Haskell, followed
by, with nearly equal reservations, Prolog and Factor. Visual
inspection quickly revealed programmers believe these lan-
guages are inflexible, have an acceptable syntax, and they
infrequently use them. Except for Haskell, the languages did
not have particularly desirable features.

The visualization also led to tweaking our ranking al-
gorithm. In particular, we found REBOL to rank high in
categories that we did not expect. The basic reason is that
it had a high deviation; it ranked highly but with little con-
fidence. This can be due to conflicting responses or overly

sparse data. Our solution was two-fold. First, we decrease
the strength of contentious results by ranking based on
“rawScore — 3 * ¢”, similar to XBox player rankings.
Second, we visualize contentious statements using translu-
cent circles. Hovering over a circle shows both the raw score
and its deviation.

2.4 Correlations and Clustering

As our research interest was more about general language
phenomena than particular languages, we next analyzed the
correlations between different statements. We treat one lan-
guage’s final statement rankings as a single high-dimensional
observation and measure the correlation coefficients across
statements. Finally, we reused the interactive heat map for
navigating the matrix of statement correlation coefficients.
We found many surprises. For example, we investigated
correlations with the desirable statement that “Third-party
libraries are readily available, well-documented, and of high
quality.”At a coefficient coefficient of 0.10, libraries only
weakly correlate with static type systems . This conflicts
with long-held beliefs about the nature of modularity by the
functional programming community [6]. We saw that, in-
stead, the most strongly correlated statement is that “there
are many good tools for this language.” Tools are weakly and
negatively correlated with correctness, which is the strongest
correlation with static types. Libraries and tools do not re-
quire functional programming nor types. A mystery arises,
however. Tools and types are both strongly correlated with



debugging and maintenance: if tools and types share similar
benefits, why is only the former correlated with libraries?

Another surprise is that terse languages anti-correlate
with annoying syntax: given long-standing critiques of
“write-once” languages, we expected the reverse. This case
is also interesting in that, as language researchers, we were
more actively seeking semantic phenomena. The visualiza-
tion highlighted surprising phenomena about a topic we did
not think to consider. For both the weak reuse of typed code
and legibility of terse code, the visualization highlighted
properties that dispute communal wisdom and phenomena
that we would have otherwise overlooked.

Finally, we computed the k-means clusterings of state-
ments and languages. We use this both to expose further re-
lationships and to simplify the earlier visualizations.

Consider analyzing the first cluster of statements shown
in Figure 4. The numbers indicate distance from the center of
the cluster: the average distance of 3.3 is good. The first and
last statements about helpful conventions and dogma pairing
together are unsurprising: social conventions often arise to
solve problems. Clustering the second statement about sim-
ple debugging with the others about convention is surpris-
ing. Norvig [10] and others view patterns and other conven-
tions as symptoms of linguistic defects, yet programmers
rank languages with them as easy to debug, which is not
a defect. Language-level research for incorporating patterns
may therefore be a case of the streetlight effect, focusing on
what is already known and ignoring what is not. Clustering
helps form hypotheses.

A subtlety of the clustering is that, for the language rank-
ings used to cluster statements, the languages did not have to
rank highly for the statements to go in the cluster. They could
be similar at any value, as long as it is consistent. The visual-
ization therefore shows which languages support the cluster,
and their rank for the center-most statement. Not shown, for
the above clustering, languages within 5% of the center have
average rank 43 with standard deviation 10. The rank is not
high relative to other statements — languages are generally
not considered overly dogmatic — but on the scale of dogma
that languages exercise (according to the ranking visualiza-
tion), it is.

We also used the clusterings to improve the original rank-
ing visualization. Showing the matrix of all 50 languages
and 111 statements was overwhelming and slow. Instead, by
default, we only show the center-most items from the state-
ment and language clusters. For example, of the statements
in Figure 4, we would only show the first about conventions
and fourth about well-organized libraries. If a user wants to
explore a particular family of languages or statements, the
clustered features can be expanded.

3. Framing the Right Questions

The Hammer Principle data was illuminating, but it left us
eager to verify our results by direct survey methods. We sug-

gested the inclusion of some questions on the routine course
entry survey for the Berkeley Massive Open Online Course
in engineering Software-as-a-Service applications and ob-
tained access to the results.

3.1 Names for language features

Software development is a technical field, and therefore has
a technical vocabulary. However, researchers and practition-
ers do not always share the same jargon. As a result, care in
wording questions is important.

One question on the MOOC survey asked developers
how often they created their own generic classes in Java. (A
generic class is one that has a type parameter, such as class
Foo<T extends Collection>.) In our sample, 40% said
they did this often or sometimes. This result is hard to be-
lieve, since a survey of existing code by Chris Parnin et al.
found that only 14% of developers are actually responsible
for doing so [11]. (Anecdotal evidence and our personal ex-
perience agrees with the study)

There are two possible interpretations of this dichotomy.
It may be that professional developers work very differently
from open source developers. We suspect, however, that de-
velopers may have misunderstood the question. We had sep-
arately asked developers about creating generic classes and
about using generic classes, such as instantiating the Java
standard library ArrayList<T>. We think this distinction is
not as clear to developers as it is to us.

For another example, consider the concept of determin-
ism, that a piece of code should produce the same behavior
each time it is invoked. We asked developers how impor-
tant this was. We found that 35% of developers (117 out of
335) responded “don’t know or no opinion.” We are unsure,
from this data, whether programmers truly have no opinion,
or whether the word is unfamiliar to them. To mitigate this
problem, surveys should be careful to define constructs and
examine the level of understanding by respondents.

3.2 Knowing a language

A basic question about programming language adoption is
how many languages developers know. We asked this ques-
tion in different ways on different surveys. The Slashdot sur-
vey (Figure 5) asked developers to list the number of lan-
guages they knew well, and separately, to estimate the total
number of languages they know. Our concurrent submission
has more details about developer language acquisition over
time. Here, we focus on ambiguities and limitations of the
survey method.

As can be seen, there is virtually no age trend; developers
of all ages list an average of six languages they know well,
and claim to have ever learned about ten. The lack of change
might suggest that developers learn their languages early,
and never learn more. However, we have separate counter
evidence from the same survey that developers routinely
do learn languages: old developers are as likely as young
developers to know newer languages, such as Ruby. We



This language has a wide variety of agreed-upon conventions which are generally adhered to reasonably well and which increase my productivity (3)

It is easy to debug programs written in this language when it goes wrong (3) ll This language has a very dogmatic community (4)

This language has well-organized libraries with consistent carefully thought-out interfaces (3)

This language encourages writing reusable code. (3)

Code written in this language is very readable (4) This language encourages writing code that is easy to maintain. (4) This language is best for very large projects (5)

This language has a high quality implementation (5)

Figure 4. Interactive visualization showing two statement clusters from a k-means analysis.
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Figure 5. Developers of different ages seem to know a sim-
ilar number of languages. Lightly shaded rectangles show
25th and 75th percentiles, darker solid bars show standard
error of mean. (Slashdot) Questions were “What program-
ming languages do you know well? List the ones you know
best in the beginning.” and “About what number of lan-
guages have you used in your life?”

suspect that developers are forgetting languages, or at least,
forgetting to mention them. The conflicting results suggest
that asking developers to estimate the number of languages
is not a reliable technique.

We tried using explicit prompts, and even checkboxes for
specific popular languages, on the MOOC survey. This does
not seem to have prevented the forgetfulness bias.

We may be encountering two broader methodological
problems. First, we are unconvinced that different devel-
opers interpret “knowing” a language the same way. There
must be some minimum level of mastery or comfort before
a developer will claim to “know assembly.” Is this level con-
stant for developers of different experience levels? Are se-
nior developers more or less assertive than junior develop-
ers? Second, there may be effects from memory and en-
gagement. Showing a list of languages may help remind
respondents of forgotten languages, but may cause fatigue.
(We showed lists of languages next to all the language-count
questions, for both surveys. The MOOC survey had explicit
checkboxes, plus a free response field.)

Figure 6. Same format as Figure 5, but for MOOC survey.
Question wording was: “List the languages in which you are
proficient, starting from ones in which you are most expert”
and “Which other programming languages have you used at
least once or twice? [with a list of checkboxes and a free
response box]”

To close with a more positive note: The MOOC survey
also asked developers about the languages they know. There,
developers were asked to list the languages they knew well,
and to separately list the languages they knew slightly. The
results are shown in Figure 6. As can be seen, the result is
broadly similar to that of Figure 5. The data is has more
variable and has wider distributions, which may be due to
the fact that MOOC students are a highly varied population
composed of several constituencies. Despite the noise, we
see that there still is no clear trend over age.

This similarity suggest that the methodological limita-
tions we highlight are not necessarily fatal. Results do ap-
pear to be reproducible, across populations and across slight
variation in the way questions are asked. However, even with
something as simple as the number of languages a develop-
ers knows well, we already see sources of variability and,
depending on phrasing, get a 50% difference in the average
answer.



3.3 Techniques for improving question quality

We used two primary techniques to limit misunderstanding:
pretesting and including free-response questions. This sub-
section discusses these techniques.

Pretesting We pretested questions in several ways.

We started by discussing the intended survey topic with
academic and industrial language designers, both in groups
and individually. This was especially helpful for soliciting
topics to analyze and, for concrete questions, possibilities to
consider. We would show the survey to respondents and ask
them to vocalize their understanding of each question and
to explain their answer. For example, we had initially asked
respondents with college degrees how many years it had
been since they left school. Pretesting caught a bug in our
thinking — some students graduate, spend time in industry,
and then return to school. We rephrased the question to
account for cases like this. Finally, we ran pilots of the
surveys. This caught formatting and survey software issues
as well as helped create surveys of an acceptable length.

Free response To detect if a bad question slipped through
pretesting, we routinely offered respondents a free-response
field and also invited them to point out any questions they
found confusing.

Free-response answers revealed several points of confu-
sion. For example, one question asked if respondents ma-
jored in “computer science or similar field.” Some respon-
dents marked no, and indicated that they majored in “soft-
ware engineering”’. The next time we asked that question, we
were clearer about what counted as related. This is important
because, in concurrent work, we found that education influ-
enced language use.

Another example of a mistake caught by free-response
is that the MOOC survey asked about college experiences.
Two-thirds of responses to the MOOC survey were from out-
side the United States, and as one commenter mentioned, not
all countries use “college” to denote the same institutions.
This is a mistake that we could not necessarily have caught
by in-person pretesting with local students and developers.

4. Asking the Right People

Above, we analyzed challenges in finding what to ask. Here,
we turn to the question of who.

4.1 Hobbyists versus professionals

Not all developers are alike. The same word might describe
hobbyist users of Visual Basic, semi-skilled PHP develop-
ers, domain experts in scientific computing, and expert dis-
tributed systems programmers at a large Internet services
company. Asking about “the average developer” or “the true
population statistic” requires picking out some subset of the
people who have ever programmed and defining them as the
population of interest.
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Figure 7. Age at time of first “Hello World” over time.
Ages decrease until people born in 1972, after which ages
climb until leveling in 1982.

MOOC | Slashdot
CS major 53% 55%
Professional Developer 62% 92%
Male 84% 97%

Table 2. Demographics from MOOC and Slashdot surveys

On our Slashdot survey, we asked developers how quickly
they learned the language they used for their last project.
We found that developers learned faster for hobby projects
than for work projects. For work, only half the users learned
within three months whereas it was over 60% for hobby
projects.

One explanation might be that developers work harder on
their own projects. Another explanation is to observe that
not all developers will program for fun. Developers who
program as hobbyists are likely to be biased towards the
developers who enjoy programming more, and who may
consequently be better at it.

This shows that professionals and hobbyists are not inter-
changeable. The hobbyists may be drawn from those devel-
opers who are the most fluent and capable. A consequence
of this is that open-source development, with a heavy hobby-
ist contingent, may not be a reliable proxy for closed-source
development, which is usually conducted by professionals.
This is a threat to the generality of research that tries to ex-
trapolate from open source to all kinds of programming.

4.2 Other demographic challenges

There are other demographic biases introduced by cross-
sectional surveys. We show demographic information about
MOOC and Slashdot in Table 2. As can be seen, the MOOC
respondents are mostly professional developers, and are 84%

1993



male, which corresponds roughly to the unfortunate demo-
graphics of our field. The Slashdot respondents were 97%
male. This does not correspond to the demographics of pro-
grammers. It does not even correspond to the demograph-
ics of Slashdot, which is only about 63% male[12]. Gender
bias has definite consequences. In contrast, 42% of female
respondents in the MOOC sample are professional develop-
ers, and 65% for male respondents.

We suspect that mentioning a survey via social network-
ing and attaching an impersonal request for responses will
bias towards the most opinionated and self-confident re-
spondents. These will skew male. Explicitly asking every
member of a population to respond to a survey (the MOOC
methodology) mitigated the male bias, and we suspect, the
opinionated-respondent bias.

The gender example is significant in another way. None
of our research questions directly concerned gender. Instead,
the fact that our responses are biased by gender gives us a
warning that there are other biases creeping in. The question
serves as something of a warning light for other methodolog-
ical limitations. Because we do not know the actual cause of
these biases, we cannot compensate with techniques such as
regression.

Demographics change over time. In Figure 7 , we show
how the average age of a developer’s first programming
experience has changed over a 55-year window. Unsur-
prisingly, it falls off as computers become more prevalent.
More surprisingly, the trend has several inflection points in
the 1980s. We very tentatively think these correlate with
changes in popular computer equipment, but verifying this
is left as future work.

On a more optimistic note, we see that the age of first
programming has stabilized. If the society of programmer
stabilizes, both cross-sectional and longitudinal studies will
have more predictive utility.

4.3 Sample bias in work environments

In the Slashdot survey, we examined demographic influences
on language selection. Respondents were asked, for the lan-
guage they used on their last project, what factor mattered
most. Reported in our concurrent work, we found that so-
cial factors, such as open source libraries and familiarity,
mattered most. Correctness, commercial libraries, simplic-
ity, and language features were the least important. However,
the results varied between different subsamples.

One of the most noticeable phenomena was considering
workplaces of 1 employee, 2-4, 5-9, 10-19, and 20 or more.
We sliced on finer granularities for large companies, such as
20-100, but the graduations were less significant. Essentially,
up to a threshold, the bigger a company, the more social fac-
tors influence language preferences. For example, develop-
ment speed matters the most for companies of 2-4 employ-
ees. The size of the organization developing code influences
the decision-making of those writing it.

Demographic effects are not always obvious. For exam-
ple, managers may have different priorities than their under-
lings. As expected, we saw an increase in social concerns
for managers, though it was slight. However, we then com-
pared managers against other respondents of the same age,
and the differences disappeared. Older employees, not just
managers, prioritize social factors slightly more than other
employees. That is not to say being a manager does not mat-
ter. For example, managers generally started programming
later than their peers, with the gap only closing at the end of
high school. For age, we saw the most important distinction
was being under 20 versus over 20. Finally, we note that we
are not just characterizing software development managers
but ones that read Slashdot and Wired.

We see that, not only will employment bias basic results,
but so do factors such as age, job role, and the nature of the
employer.

4.4 Sample bias in open source repositories

Early in our work, we analyzed the SourceForge software
repository to quantitatively analyze actual language use. We
encountered substantial sample bias, some of which we dis-
cuss here.

We found that the population dynamics on SourceForge
changed over time. Figure 8 illustrates several trends by
showing, for each language, which months it was most used
in. The rise (and fall) of each language varies. For example,
D spiked in 2007, and Scheme plummeted in early 2009. We
also found that the best single predictor for the language of
a project is the language used on the previous one, which
is true 30% of the time. The changes in popularity and the
tendency to reuse a language, together, mean that the year in
which a project is developed in a language reveals artifacts
about the developer. Sampling from popular years vs. un-
popular ones may correspondingly sample experienced and
unexperienced language users. The year a project is written
in a particular language matters in understanding the type
of developer.

Significantly, overall use of SourceForge waxed and then
waned. The middle of 2006 began a long-running boom
that began to collapse in 2009. A major reason is the rise
of alternative repositories. GitHub launched in April of
2008, reached 40,000 repositories by early 2009 (25% of
the shown SourceForge projects), and 1 million total repos-
itories by July of 2010. In April of 2011, it hit 2 million
repositories.” Bitbucket also launched in 2008, and Google
Project Hosting has been available since at least 2007. These
repositories vary by language, license, and version control
system for the hosted projects. The repository selected for
a project matters, as does the point in time when the data
is collected. For example, projects in 2009 can be labeled

2 https://github.com/blog/455-100-000-users, https://github.com/blog/936-
one-million, https://github.com/blog/841-those-are-some-big-numbers
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as belonging to early adopters based on which repository is
selected.

Some languages, such as Perl and Python, have language-
specific code repositories. Projects not in those repositories
may be more likely to be created by an estranged language
user, and therefore one who deviates from linguistic norms.

We see that the language, repository, year, and developer
history are all considerations when analyzing an open source
project.

5. Related Work

Surveys are commonly performed for software engineering
research, but much less so for understanding programming
languages.

Ambitiously, Chen et al [2] model programming lan-
guage adoption via statistical regression. A web-based sur-
vey of developers was used as ground truth for the experi-
ment. Unfortunately, they include no information about the
demographics of the surveyed population — or even about
the sample size.

There has been some experience with targeted surveys
of developers within particular organizations. A 2000 study
by Agarwal et al. looked at factors that explain how eagerly
COBOL programmers at a large financial-services company
learned the C language [1]. Riemenschneider et al. looked at
how programmers inside an organization do or do not adopt

a formal development methodology [13]. Both studies had
comparatively small samples sizes — 71 and 128 developers,
respectively.

As mentioned, mining software repositories has become
a standard technique in software engineering research. A
whole conference series exists on the topic. Zeller et al. of-
fer a methodological critique of such techniques [14]. They
emphasize the importance of grounding studies in predictive
theories and of using sensible abstraction levels. We are fo-
cused on a different class of methodological error: those due
to inappropriate generalizations from particular data sources.

For a substantial bibliography on sociological research
on programming language usage and adoption, we refer the
reader to our earlier work [9].

6. Conclusion: A Delicate Opportunity

Throughout this paper, we have presented quantitative re-
sults about programming language use, from tools benefiting
library building more than types, to terse languages being
legible, to social factors most influencing on language se-
lection and even more so at large companies. Surveys, both
sent directly to developers and indirectly gathered through
repositories, have a lot to teach us about the nature of pro-
gramming languages.

However, as analyzed in this paper, using surveys as a
research instrument is challenging. Inappropriate use will



limit the generality of perceived results. We discussed three
common challenges to our work, and how we overcame
them:

Sparse, contentious data Especially when used for initial
qualitative analysis, data sets will be big, sparse, and high-
dimensional. Machine learning helps find relationships, but
care must be taken to track certainty. Time taken to build
interactive visualizations is well-spent as it yields a tool for
building hypotheses and checking any analysis.

Phrasing We found that there was significant risk of fram-
ing questions in ways that developers could not easily un-
derstand. Terminology should be assumed suspect. Pretest-
ing helped us reduce this risk; we found that the larger and
more diverse the pretest audience, the bigger the benefit. Er-
rors will still happen, such as cultural ones due to the global
nature of modern software development. Free form answers
provide outlets for qualitative feedback, and critical to sur-
vey instrument quality, will reveal errors. Manually reading
feedback from thousands of respondents is not always fun,
but it is important.

Sample bias is a problem with most surveys: different de-
mographics have a different probability of participating, and
no recruitment strategy is perfect. Instead of focusing just on
preventing bias, we found it important to also detect when
and how it invariably happened. Demographic questions en-
able the use of regression to account for some forms of bias,
and at a more fundamental level, expose that a bias even ex-
ists. We show how sample bias influences analysis, including
the popular research technique of mining software reposito-
ries.

We suspect that programming language and software en-
gineering research will be increasingly able to benefit from
survey data. Thanks to the rise of massive online courses
that target adult practitioners, it is increasingly feasible for
the academic community to directly survey large numbers of
professional developers. Specific language communities are
increasingly receptive to surveys as well. For example, there
is an annual survey of developers working in the Clojure
language [3], and similar efforts occur in the Scala commu-
nity. Popular languages have supporting communities, and
we found community leaders to be supportive of work such
as our own.

We hypothesize, as part of overall data-driven trends for
best practices in software, that surveys will become standard
practice for programming language research and practice.
We hope our experiences are useful to others planning to
analyze such promising but sensitive data.

Acknowledgments

We thank David Maclver for graciously offering us the data
from the Hammer Principle website and David Patterson
and Armando Fox for access to the survey of their MOOC

course. Anonymous reviewers provided helpful editing sug-
gestions.

Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by
U.C. Discovery (Award #DIG07-10227). Additional support
comes from Par Lab affiliates National Instruments, Nokia,
NVIDIA, Oracle, and Samsung.

References

[1] R. Agarwal and J. Prasad. A Field Study of the Adoption of
Software Process Innovations by Information Systems Profes-
sionals. IEEE Trans. Engr. Management, 47, 2000.

[2] Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang. An empirical
study of programming language trends. IEEE Software, 22:
72-78, May 2005.

[3] C. Emerick. http://cemerick.com/2012/08/06/
results-of-the-2012-state-of-clojure-survey,
2012.

[4] A. Fox and D. Patterson. Software engineering for saas.
https://www.coursera.org/course/saas, 2012.

[5] M. E. Glickman. Parameter estimation in large dynamic
paired comparison experiments. Journal of the Royal Sta-
tistical Society: Series C (Applied Statistics), 48(3):377-394,
1999.

[6] J. Hughes. Why Functional Programming Matters. Computer
Journal, 32(2):98-107, 1989.

[71 D. R. Maclver. The hammer principle.
hammerprinciple.com/therighttool, 2010.

[8] D. R. Maclver. Personal Communication, 2012.

[9] L. A. Meyerovich and A. Rabkin. Socio-PLT: Principles
for Programming Language Adoption. In Onward!, October
2012.

[10] P. Norvig. Design patterns.
design-patterns/, March 1998.

[11] C. Parnin, C. Bird, and E. Murphy-Hill. Java generics adop-
tion: how new features are introduced, championed, or ig-
nored. In Proceedings of the 8th Working Conference on Min-
ing Software Repositories, MSR 11, 2011.

[12] Quantcast. Slashdot Traffic and Demographic Statis-
tics. http://www.quantcast.com/slashdot.org#
! demo&anchor=panel-GENDER, June 2012.

[13] C. K. Riemenschneider, B. C. Hardgrave, and F. D. Davis. Ex-
plaining software developer acceptance of methodologies: A
comparison of five theoretical models. IEEE Trans. Software
Eng., 28, 2002.

[14] A. Zeller, T. Zimmermann, and C. Bird. Failure is a four-
letter word: a parody in empirical research. In Proceedings
of the 7th International Conference on Predictive Models in
Software Engineering, 2011.

http://

http://norvig.com/



