Secure Cooperative Sharing of
JavaScript, Browser, and Physical Resources

Leo A. Meyerovich, David Zhu
{Imeyerov, yuzhu}@eecs.berkeley.edu
University of California, Berkeley

ABSTRACT

For better application-level controls on mashups, we ad-
vocate extending the Single Origin Policy and associated
primitives to support a cooperative model that allows ap-
plications to express explicit sharing policies over browser,
Javascript, and physical resources.

First, we introduce an isolation model for content loading
that is more complete than those of surveyed browser pro-
posals. Second, we present new primitives to enable an ap-
plication to secure its use of untrusted content by delegating
browser, JavaScript, and physical resources in a fine-grained
and reliable manner. Finally, essential to adoption, we pro-
pose an architecture based on designs for related abstrac-
tions with low performance and implementation costs.

1. INTRODUCTION

As web content evolves from static documents to server-
generated components that interact with third party li-
braries, user-generated content, and even third-party appli-
cations, trust relationships have become more nuanced than
shared nothing (different origin) or shared everything (same
origin). Many policies are being proposed, but they are of-
ten too static or coarse. Worse, they are enforced with either
hard-coded browser instrumentation or indirect techniques
like page rewriting and script wrapping. In summary, brow-
ser support for security is efficient and reliable, but browser
policies do not address appliciation-specific concerns. While
there have been significant advances in isolating principals
in browsers, efficient and reliable abstractions and mecha-
nisms to safely share resources between otherwise isolated
principals are less clear.

In this paper, we attempt to bridge this gap by propos-
ing a cooperative model that allows fine-grained sharing be-
tween different-origin principals of browser, JavaScript, and
physical resources subject to scriptable policies. To moti-
vate our proposal, consider a site like Facebook that enable
users to embed third-party applications and share rich con-
tent with each other. Figure 1 shows how Facebook might
use a few new isolation and sharing primitives we will de-
scribe in Section 3 to achieve application control of these
resources:

Controlling browser resources (lines 1-6, 9-10). If
a gadget is to be empowered to visualize privileged user
profile information, a simple policy to keep the data confi-
dential would be to force the gadget to pre-load all external

Benjamin Livshits
livshits@microsoft.com
Microsoft Research

var toggle = true;

delegateNetwork(gadget, "http://gadget.com",

function () { if (toggle) return true; 1});

function giveData () {

toggle = false;

return "profile data"; }

around(gadget, giveData,

function (proceed) { return proceed(); 1});
. <CoFrame src=http://gadget.com/page id=gadget

0. passthrough="html css js"

1 delegate=".1 cpu"/> ...

PR OONOO P WN -

Figure 1: Facebook giving a gadget limited network,
function, and CPU time access.

resources, and then, before providing it privileged data, dis-
able the gadget’s network access. In the current model, gad-
gets get access to various browser resources such as cookies,
network access automatically, making these types of poli-
cies difficult or impossible to implement. In our new pro-
posal, Lines 9-10 load the gadget with no facebook-origin
nor gadget-origin network access and lines 1-6 turn gadget-
origin network access on and off. Note that access must be
delegated and is disabled by default. The controlling prin-
cipal, in this case Facebook, defines the policy.

Other gadget-origin browser resources of interest include
the ability to execute JavaScript as in CONSCRIPT [11], cre-
ate and modify DOM elements as with METs [4], and use
persistent storage. Furthermore, while CONSCRIPT enables
control of the IE8 JS interpreter’s access to COM (e.g.,
browser) objects, it could not control many security-critical
calls, such as inter-native component ones experiment upon
within the OP Browser [6]. We advocate subjecting these
to application control.

Controlling script resources (lines 4-7). In the current
browser model, different origin frames share no Javascript
objects between one another and are only guaranteed secure
communication of immutable structures like strings. The
inability to share objects like records and functions restricts
the programming model. As web applications grow, so does
the need for more flexible sharing scheme. We advocate
associating every JavaScript heap object with a principal
as is already common in browsers [5]. By default, every
such value is inaccessible to other principals. We propose,
using the cross-principal advice function around in line 7, a
principal may provide access of one particular heap object
to a different principal: even if there are other heap objects
connected to the shared object on the reference graph, cross-

principal access to them is still denied as they have not been
explicitly shared.

Controlling physical resources (line 11). Browser
responsiveness and other forms of quality of service are
increasingly critical. However, current browser-supported
policies allow malicious components to monopolize re-
sources. First, consider CPU scheduling in recent secure
browsers, where, notably, Chrome provides fair scheduling
between windows and Gazelle between frames. Despite the
goal of performance isolation, in both cases, deviant content
may still dilute CPU time of other principals by creating new
windows or frames, respectively. Second, compute-intensive
web applications and certain functions of the browser may
employ highly optimized code that is sensitive to changes
in the underlying hardware usage, such as cache usage, task
migration etc. [12] Thus, in both adverserial and benign
scenarios, having knowledge and control of physical resource
can improve the perceived performance of browsers and the
applications.

As shown in line 11 of Figure 1, Facebook can set a bound
on the resources available to the gadget. This demonstrates
an application may customize content’s use of physical re-
source to its need instead of adopting a static browser-
defined policy. Similar to our browser and JavaScript prim-
itives, such sharing may be dynamic and even scriptable.

In the following sections, we first argue for application-
level control of these resources and browser support to re-
liably and efficiently do so. We state our goals and exam-
ine the current system to see why they are not satisfac-
tory (Section 2). Next, we present our main contribution
of this paper, a set of more complete isolation and finer-
grained sharing primitives for 1) browser, 2) JavaScript and
3) physical resources (Section 3). Finally, we examine how
our approach might be efficiently implemented. (Section 4)
and reflect upon strengths and challenges of our approach.

2. TRUST AND PRIVILEGE MODEL

We are interested in browser support of application-specific
policies and in this section we make a case for both. We
present additional requirements of the resource policies and
evaluate current solutions to see where they fall short.

2.1 Principles
Systems should observe the following principles:

Application-specific policies. Given the diversity of web
applications, one-size-fit-all policies are no longer sufficient.
Browsers need to provide primitives to the applications to
customize policies, rather than forcing every application
to adopt the same policy as it is done today with SOP.
More subtly, achieving the separation of policies from mech-
anisms would decouple application security from the unreli-
able browser upgrade cycle and enable more rapid iteration
over policy design.

Browser support. Policy enforcement should primarily
rely upon browser-provided support. This has several ad-
vantages over other browser independent techniques such
as script rewriting and wrapping. For example, CON-
ScrIPT [11] shows benchmarks that perform 2.7 times bet-
ter. In addition, rewriting and wrapping are fragile, leading
to excessive privilege escalation as shown in [5] and [10].
Finally, new browser features and even modifications often
break the assumptions made by the rewriting and wrapping

tools, leading to inconsistent policies and therefore security
breach.

Cooperative sharing. The proposed resource manage-
ment scheme should match the structure of the browser,
which follows a hierarchical manner: a browser delegates re-
sources to the top level containers (e.g., a window or tab),
which then specifies the resource policy of its embedded enti-
ties. We must protect gadget use of gadget-origin resources
as well: a container should be able to toggle a gadget’s ac-
cess to them, but unable to otherwise tamper with toggled
(gadget-origin) resource interactions.

The resource policies should be fine-grained, deep and
default-deny. First, the granularity of resource policy should
match the programming model. For example, applications
in JavaScript use functions and objects to model domain
concepts, so application security controls should be on more
than just strings, such as is achieved by object capability
languages. [14] Second, we advocate deep advice policies
that associate protection logic with an object and its in-
teractions, rather than on its access path. This is more
reliable than indirect (alias-based) techniques like wrapping
or rewriting [11] by providing direct mediation. Finally, fol-
lowing the principle of least authority, we should not allow
loaded gadgets to access any resource that has not been ex-
plicitly shared by the container. We argue that when one
JavaScript object is passed to an untrusted principal, other
objects referenced by it (the reference graph) should, by de-
fault, still be inaccessible by the untrusted principal even
though they are accessible to the owning principal. Such
control is expressible, for example, with object views [13],

2.2 Compliance of Modern Systems

In Figure 2, we compare sharing support of var-
ious standard and proposed browser primitives ac-
cording to our guidelines (default deny, granular-
ity /directness/scriptability, tampering). The surveyed
tools, in order, are string message passing frames in cur-
rent browsers, Gazelle service and null instances [16] (more
powerful than Google Chrome frames), OMash cross-origin
access control lists (with reference passing) [3], Google Caja
with same-frame (rewritten) gadgets [15], object views using
a a serialization protocol for passing remote object access
between different-origin frames [13] over the postMessage
string-passing primitive, and ConScript [11] for same-frame
JavaScript advice. The bottom row is an idealized approach
(to be proposed in Section 3) that is at least as good as the
rest in every category.

Consider a container sharing container-origin resources
with a gadget. Gadgets typically cannot access container
JavaScript values by default: CONSCRIPT is an exception as
it uses same-origin script tags and selectively disables (in-
stead of enabling) access. More concerning is unit of control.
Almost all proposals that support sharing of values beyond
strings share references rather than individual values: pass-
ing one reference implicitly passes any others referenced by
the value (the reference graph), violating the principle of
least authority (POLA). Figure 2 differentiates betweens be-
tween unrestricted sharing of entire reference graphs (ref)
and the directly referenced heap object (value).

Browser resource sharing has similar challenges as
JavaScript resource sharing, except reference passing has the
additional challenge that DOM APIs do not directly reflect
deep functionality. For example, there is no accessible value

Gadget Access of Container-Origin Resources Gadget Access of Gadget-Origin Resources

JavaScript Browser Physical JavaScript Browser Physical
Mechanism deny | control | d. deny | control | d. deny | control | untampered | d. deny | control | d. deny | control
frame v string v string X X v X X X X
serviceinstance v string v string Xt X v X X Xt X
nullinstance v string v string X X v v X X X
omash v ref v ind. ref X X v X X X X
Cajasame-frame v ref v ind. ref X° X° X v X X¢ X¢
cajadiff-frame v ref v ind. ref X X frame v all/none X X
object views v value v ind. val X X v X X X X
conscript xb value XP value X X X X all /none v X
coframe(jgeal) v value v value v value v v value v value

b
Opt-in (e.g., blacklist).
ref) . val
Sharing a JavaScript value passes a reference graph
ind
Security-critical functions are not exposed to direct JavaScript control

c
Same-frame JavaScript CPU control in Web Sandbox

Gadgets are fairly scheduled with the container, giving excess privilege

Sharing a JavaScript value only enables direct access to just that value

Figure 2: Comparison of browser-side application-specific cooperative sharing approaches.

representing container-origin network calls. To control such
functionality, tools must approximate access paths, such as
controlling XMLHttpRequest and image loading to control
vectors for network access, and instrument these. Such an
approach — applicational-level taming — is fragile because it
is unreasonably indirect (ind in the table) . Finally, the
only support for physical resources is the fair scheduling of
Gazelle, which still allows resource exhaustion and does not
support delegation, and unreliable timeouts inserted within
JavaScript in Microsoft Web Sandbox (a project similar to
Caja).

Finally, consider container control of gadget access to dele-
gated gadget-origin resources. For example, a container may
want to control its gadget’s access to gadget-origin cookies.
First, the gadget must be free of container tampering, such
as a container reading the value of a privileged gadget-origin
cookie field: this is correctly prevented in most proposals,
with the notable exceptions of same-frame content in Caja
and CONSCRIPT that provides excessive control to the con-
tainer. Another problem is that gadget-origin browser re-
sources are generally enabled by default, and when they are
not (Caja and Gazelle), access controls are all-or-nothing.
The lack of gadget-origin physical resource sharing is simi-
lar to the lack of container-origin resource sharing.

The remainder of the paper proposes the design (Sec-
tion 3) and implementation (Section 4) of primitives that
address the above gaps in access control.

3. ISOLATION & SHARING PRIMITIVES

We revisit our motivating example in Section 1 to explain
our new isolated loading and resource sharing primitives.
After, we discuss the usability of our proposed primitives.

For simplicity, we assume container and gadget are of dif-
ferent origin and thus interchange principal and origin.

3.1 Initial Isolation

In Figure 1, we initially isolate the gadget using our new
abstraction of a CoFrame. A different origin CoFrame, by de-
fault, cannot access its container’s JavaScript, browser, nor
physical resources. Similarly, it does not have ambient ac-
cess to same-origin JavaScript or browser resources. Instead,
it must rely upon the container to explicitly grant such re-
sources. In contrast, while a different origin frame does not
have access to container physical and browser resources, it
has undesirable ambient access to the containers physical

resources and full access to gadget browser and physical re-
sources.

Various same-origin CoFrame instances may have distinct
privilege levels, such as only one having the ability to com-
municate with the outside world. If they can communicate,
they can collude. The ability to communicate is therefore
disabled by default: a communication channel must be ex-
plicitly provided by the container.

3.2 Granting Access to Browser Resources

By default, the gadget does not have gadget-origin net-
work access nor facebook-origin network access. Line 2 of the
policy is executed whenever gadget-origin network access is
attempted by the gadget. By default, it is disabled. Note
that Facebook’s tampering with the call, such as by trying to
steal a login password, is prevented by default. In contrast,
similar to the next example of controlling facebook-origin
JS value access, Facebook can tamper with facebook-origin
network access: to force a gadget to choose between tam-
perable facebook-origin network access or no network access
at all (due to insufficient privileges), Facebook would not in-
struct the frame loader to enable the gadget-origin network
call and instead only delegate it the facebook-origin one.

Browser resources to be shared include the foreign func-
tion interface exposed for handling the DOM. [11] How-
ever, this is often indirect. Just as we advocate the ability
to control script injection, [11] which is not directly repre-
sented in the current DOM nor JS libraries, there are other
security-critical end-points in the browser, such as file and
network IO. The Content Security Policy and OP Brow-
ser [6] projects highlight additional resources of interest even
if they provide little to no control over them.

3.3 Sharing JavaScript Resources

A CoFrame gadget has references to its container and
gadget-origin JavaScript objects, but their usage is denied
by default. First, this is because it does not have the ability
to execute code, which is a gadget-origin browser resource to
be toggled by the container. Once granted such access, we
focus on a primitive for enabling gadget access to container-
origin JavaScript values.

We use our notion of object views [13] to share JS values
(as opposed to just strings or difficult-to-manage chunks of
reference graphs). A container may provide access for par-
ticular JS values to particular origins, as in line 7 of the ex-

Parent Frame

_____________________________ Child CoFrame Legend

E RC1 E E E Intra-principal

| A ; RC2 DOM [: Reference Monitor

i DOM | HTML | L i E

i — i —C;F’é _ 'i IRM HTML i :"R-C-Z """ E Resource Container

: RM N.=" | : bosssssssd ' o

1 ’ T 4 1 —— Communication

1 IPAL \\ v JSVM L A

: S~a o - b i H - D Advi

E . IS, R : 1S i R eep Advice

1 l :

FacebOOk _______ Neo—— . Gadget . Cross-Principal
IPA/CPA ™ /7 CPA advice

o — SRR \

i Cookies GRM Cookies ; @ Global _

i ! Reference Monitor

' Network , Network | Shared ! pri

! ! . i &I r|Yate Heap

i RC1 File 1/0 {RC2 File 1/0 | Services ; Objects

Figure 3: Proposed Architectural Design.

ample. Any interaction with the value, like calling, reading,
and writing, triggers the interpositioning code. For POLA,
cross-origin access to a value triggers a default-deny policy:
a policy must be explicitly set to enable it.

To protect the gadget from its container, the gadget’s
JavaScript values are also default-deny for other origins: un-
like most proposals, a gadget would also have to explicitly
share a JavaScript value with its container. Furthermore,
advice is double-sided: beyond just explicitly exporting its
JavaScript values, a principal must import untrusted ones.
Principals must there explicitly enable what they deem to
be safe interaction patterns with untrusted objects.

3.4 Physical Resource Policy

Access to physical resources by a CoFrame are also sub-
ject to default-deny policies. Otherwise, both the container
and the entire system is open to denial of service attacks.
Physical resources of interest include CPU time, memory
and offline storage consumption, network bandwidth, and,
increasingly important on mobile devices, power and energy.

By default, a CoFrame receives no access to the physical
resource, regardless of its origin. Using high-level abstrac-
tions such as lottery tickets, a container may transfer its
resources to the CoFrame as demonstrated in line 12 of the
example. We also allow the container to revoke the resources
later (such as changing the attribute on line 11), enabling
the dynamic adjustment of resource allocation based on ap-
plication need and user focus.

3.5 Usability

We argue that our primitives provide a usable interface
for both directly specifying policies and when used in con-
junction with other tools.

Our primitives are intuitive for a web programmer as they
are similar to existing JavaScript primitives. For example,
JavaScript already supports advice for setting and getting
fields of objects; we extend this ability to also apply advice
to invocations of a function object and make it sensitive to
the principal performing the action. Similarly, the intro-
duction of principals subsumes points of introduction under
the current Same Origin Policy — CoFrames are an alter-

ative to different-origin frames — and provides an analogous
extension to CoScripts instead of (insecure) different-origin
scripts. Thus, our trust model and associated primitives
for increasing privilege are consistent with the existing and
widely-deployed browser programming model.

Finally, our primitives are useful even when not directly
invoked by application developers. Modern applications em-
ploy a variety of languages and frameworks. Even when a
developer might not directly use our mechanisms, their tools
might. For example, we found a JavaScript function advice
primitive to be useful for securing the output of a C#-to-
JavaScript compiler [11]. Similarly, frameworks like Caja for
widgets, AdSafe for advertisements, and blog management
systems put significant effort in finding vectors for code in-
jection: basic control of browser resources would make these
attempts more reliable. Recent proposals have suggested
that application-specific policies can be generated without
requiring the author to write code. For example, a static [7]
or dynamic analysis [11] can be used to determine acceptable
interaction patterns which a developer then simply audits.
Given the flexibility of JavaScript, reliabile enforcement in
these intrusion detection systems is non-trivial. To achieve
reliability, Guha et al advocated performing the intrusion
detection checks with a serverside proxy, and therefore at the
cost of granularity and performance. Our primitives would
enable such tools in terms of reliability and performance
without requiring application developers to code policies.

4. ARCHITECTURE

To enable efficient and reliable enforcement of policies
like the above, we propose several simple architectural and
scripting engine changes. Figure 3 captures three central el-
ements of our design: protection, advice mechanism and co-
operative resource management. Each rectangle represents a
protection boundary that needs to be enforced. Protections
for the shared services, DOM, HTML are achieved through
process boundaries, while scripts are isolated based on lan-
guage safety properties and relies on the JavaScript VM.
We stress the choice of isolation mechanisms is independent
from the other aspects of the design that follows; we only

describe one design. For example, we segregate the refer-
ence monitor for local resources and global shared browser
resources to limit the impact of a compromised reference
monitor.

Cross-principal JavaScript advice. Every JavaScript
object may be tagged with an origin so the use of values
can be checked for advice (which are just JavaScript func-
tions). In COoNScRIPT, we found that checking for advice in
the typical case of having none (for calling functions) had
an imperceptible cost in Internet Explorer 8’s interpreter.
Barth et al. have shown that polymorphic inline caches may
be reused to efficiently check same-origin access in method-
based JITs [2] and we expect these checks can often be com-
piled away entirely in tracing JITs. When advice is enabled,
meaning a policy that requires computation, we expect simi-
lar results: micro-benchmark overhead for running an empty
advice function was 2-3% in CONSCRIPT. Further costs are
questions of policy.

Deep browser advice. In CONSCRIPT, we provided deep
advice to the call to receive text and convert it into exe-
cutable code, and the foreign function interface (e.g., DOM
calls), with uses such as detecting cross-site scripting at-
tacks. There are other components of interest as well for
which this is a reliable and efficient approach. The OP
Browser, as part of its design, separated core browser com-
ponents and verified a model of the interactions between
them. Furthermore, it routed all inter-component commu-
nication through a browser kernel, enabling it to experiment
with a variety of browser security policies. If these controls
were to be exposed to the application level, more direct rea-
soning about interactions would be possible. Depending on
how components are implemented (native code with heavy
processes, managed code, etc.), there are different concerns
such as memory footprint and message-passing overhead.
However, we believe advances in operating systems, com-
piler technology, and hardware may prove beneficial here:
for example, the OP Browser has found that their partition-
ing has actually sped up their performance.

Cooperative physical resource management. Coop-
erative resource allocation enables application’s to prevent
attacks like DOS. Our interest in better physical resource
control also stems from the design of our parallel web brow-
ser [8] as much of the time in browsers is spent in native
libraries like CSS selector matching. Tuned algorithm ap-
proaches [12], reminiscent of typical HPC techniques like
tiling, give magnitudes of improvements, so having better
control would yield to better speedups. Finally, effective
QOS management is not possible without accurate account-
ing of resource usage. To achieve more accurate accounting
of resource consumption, we are advocating concepts sim-
ilar to Resource Container [1]. Shared services and the
JavaScript VM can take on the resource container of the
corresponding principal as needed. We outline how an op-
erating system may support many of these ideas in our ex-
perimental OS [9].

5. CONCLUSION

Modern browser and web applications are becoming in-
creasingly complex. We propose a design of a few sim-
ple browser supported primitives that allows applications
to customize its sharing policies of Javascript, browser and
physical resources in a more reliable and efficient man-

ner. In particular, we 1) introduce cross-principal advice
for JavaScript and propose exposing 2) browser component
interfaces and 3) physical resources to such control. We
argue that such controls are well-aligned with the success-
ful web programming model and, based on related advances
in compilers and operating systems, may be efficiently sup-
ported without significant rewriting of browsers. We believe
such support is an effective path towards more secure and
performant web applications.

6. REFERENCES

[1] G. Banga, P. Druschel, and J. C. Mogul. Resource containers:
A new facility for resource management in server systems. In
Proc. of the ACM Symp. on Operating Systems Design and
Implementation (OSDI), 1999.

[2] A. Barth, J. Weinberger, and D. Song. Cross-origin JavaScript
capability leaks: Detection, exploitation, and defense. In
Proceedings of the USENIX Security Symposium.

[3] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web
mashups via object abstractions. In CCS ’08: Proceedings of
the 15th ACM conference on Computer and communications
security, pages 99-108, New York, NY, USA, 2008. ACM.

[4] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web
application security. In HOTOS’07: Proceedings of the 11th
USENIX workshop on Hot topics in operating systems, 2007.

[5] M. Finifter, J. Weinberger, and A. Barth. Preventing capability
leaks in secure javascript subsets. In Proc. of Network and
Distributed System Security Symposium, 2010.

[6] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the op web browser. In SP ’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, pages 402-416, 2008.

[7] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis
for AJAX intrusion detection. In Proceedings of the
International Conference on World Wide Web, pages 561-570,
2009.

[8] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik.
Parallelizing the web browser. In Proceedings of the Workshop
on Hot Topics in Parallelism, March 2009.

[9] K. Klues, B. Rhoden, D. Zhu, A. Waterman, and E. Brewer.
Processes and resource management in a scalable many-core os.
In HotPar ’10: Proceedings of the 2nd Workshop on Hot
Topics in Parallelism, 2010.

[10] S. Maffeis, J. Mitchell, and A. Taly. Run-time enforcement of
secure javascript subsets. In Proc of W2SP’09. IEEE, 2009.

[11] L. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the
browser. In IEEE Symposium on Security and Privacy, May
2010.

[12] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In Proceedings of the 2010 World Wide Web
Conference, 2010.

[13] L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views:
Fine-grained sharing in browsers. In Proceedings of the
International Conference on World Wide Web, 2010.

[14] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control. PhD
thesis, 2006.

[15] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja
- safe active content in sanitized JavaScript, October 2007.
http://google-caja.googlecode.com/files/caja-spec-2007-10-
11.pdf.

[16] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,
and H. Venter. The multi-principal os construction of the
gazelle web browser. In Proceedings of the 18th USENIX
Security Symposium, Montreal, Canada, August 2009.

